File size: 1,791 Bytes
2b0de12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: EleutherAI/pythia-410m
tags:
- generated_from_trainer
model-index:
- name: Malawi-Public-Health-Systems
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Malawi-Public-Health-Systems

This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9453

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 400
- total_train_batch_size: 400
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 1000

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1272        | 71.32  | 120  | 3.2478          |
| 0.1003        | 142.64 | 240  | 3.6082          |
| 0.1017        | 213.97 | 360  | 3.7057          |
| 0.1001        | 285.29 | 480  | 3.7969          |
| 0.0949        | 356.61 | 600  | 3.8484          |
| 0.0984        | 427.93 | 720  | 3.8783          |
| 0.0956        | 499.26 | 840  | 3.9172          |
| 0.0955        | 570.58 | 960  | 3.9453          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2