File size: 1,842 Bytes
2b60e0b
 
 
 
6c42a9e
 
2b60e0b
 
 
 
 
 
 
 
 
 
 
6c42a9e
d0ff32b
6c42a9e
2b60e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0583f7e
 
2b60e0b
 
 
 
0583f7e
2b60e0b
6c42a9e
 
 
 
 
 
 
 
 
 
 
 
 
 
2b60e0b
 
28910b7
 
 
2b60e0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2708
- Accuracy: 0.9032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7999        | 0.13  | 38   | 0.7968          | 0.7143   |
| 0.3574        | 1.13  | 76   | 0.6632          | 0.7571   |
| 0.1651        | 2.13  | 114  | 0.3926          | 0.8429   |
| 0.0843        | 3.13  | 152  | 0.3751          | 0.8714   |
| 0.1116        | 4.13  | 190  | 0.3232          | 0.9286   |
| 0.0123        | 5.13  | 228  | 0.1498          | 0.9429   |
| 0.0188        | 6.13  | 266  | 0.4283          | 0.9      |
| 0.0146        | 7.11  | 300  | 0.4197          | 0.9      |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3