Juslin commited on
Commit
d36b4ee
1 Parent(s): 437dba3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -63
app.py CHANGED
@@ -1,63 +1,48 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering, Trainer, TrainingArguments
2
+ import torch
3
+
4
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
5
+ model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased")
6
+
7
+ train_dataset = ("squad")
8
+
9
+ def tokenize_function(examples):
10
+ return tokenizer(
11
+ examples["questions"],
12
+ examples["context"],
13
+ truncation="only_second",
14
+
15
+ max_length=512,
16
+
17
+ padding="max_length",
18
+ stride=128,
19
+
20
+ return_overflowing_tokens=True,
21
+ return_offsets_mapping=True,
22
+ return_attention_mask=True,
23
+ return_token_type_ids=True,
24
+ )
25
+ tokenized_datasets = dataset.map(
26
+ tokenize_function,
27
+ batched=True,
28
+ remove_columns=["id", "title",
29
+ "question", "context"],
30
+ )
31
+ training_args = TrainingArguments(
32
+ per_device_train_batch_size=8,
33
+ num_train_epochs=3,
34
+ logging_dir='./logs'
35
+ )
36
+ def compute_metrics(p):
37
+ return {}
38
+
39
+
40
+ trainer = Trainer(
41
+ model=model,
42
+ args=training_args,
43
+ train_dataset= tokenized_datasets["train"],
44
+ tokenizer=tokenizer,
45
+ compute_metrics=compute_metrics,
46
+ )
47
+
48
+ trainer.train()