Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,48 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
""
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, Trainer, TrainingArguments
|
2 |
+
import torch
|
3 |
+
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
5 |
+
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased")
|
6 |
+
|
7 |
+
train_dataset = ("squad")
|
8 |
+
|
9 |
+
def tokenize_function(examples):
|
10 |
+
return tokenizer(
|
11 |
+
examples["questions"],
|
12 |
+
examples["context"],
|
13 |
+
truncation="only_second",
|
14 |
+
|
15 |
+
max_length=512,
|
16 |
+
|
17 |
+
padding="max_length",
|
18 |
+
stride=128,
|
19 |
+
|
20 |
+
return_overflowing_tokens=True,
|
21 |
+
return_offsets_mapping=True,
|
22 |
+
return_attention_mask=True,
|
23 |
+
return_token_type_ids=True,
|
24 |
+
)
|
25 |
+
tokenized_datasets = dataset.map(
|
26 |
+
tokenize_function,
|
27 |
+
batched=True,
|
28 |
+
remove_columns=["id", "title",
|
29 |
+
"question", "context"],
|
30 |
+
)
|
31 |
+
training_args = TrainingArguments(
|
32 |
+
per_device_train_batch_size=8,
|
33 |
+
num_train_epochs=3,
|
34 |
+
logging_dir='./logs'
|
35 |
+
)
|
36 |
+
def compute_metrics(p):
|
37 |
+
return {}
|
38 |
+
|
39 |
+
|
40 |
+
trainer = Trainer(
|
41 |
+
model=model,
|
42 |
+
args=training_args,
|
43 |
+
train_dataset= tokenized_datasets["train"],
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
compute_metrics=compute_metrics,
|
46 |
+
)
|
47 |
+
|
48 |
+
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|