JustDoItNow commited on
Commit
88131f3
1 Parent(s): dee6f40

Model save

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/deberta-v3-base
5
+ tags:
6
+ - trl
7
+ - reward-trainer
8
+ - generated_from_trainer
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: deberta-v3-base-reward-model
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deberta-v3-base-reward-model
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0165
24
+ - Accuracy: 0.995
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 1.41e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 8
46
+ - seed: 42
47
+ - gradient_accumulation_steps: 2
48
+ - total_train_batch_size: 32
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
57
+ | 0.039 | 2.0 | 100 | 0.0255 | 0.9925 |
58
+ | 0.0092 | 4.0 | 200 | 0.0185 | 0.995 |
59
+ | 0.0008 | 6.0 | 300 | 0.0148 | 0.995 |
60
+ | 0.0022 | 8.0 | 400 | 0.0187 | 0.995 |
61
+ | 0.0006 | 10.0 | 500 | 0.0165 | 0.995 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.45.1
67
+ - Pytorch 2.4.1
68
+ - Datasets 3.0.1
69
+ - Tokenizers 0.20.0