Create custom_interface.py
Browse files- custom_interface.py +158 -0
custom_interface.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from speechbrain.pretrained import Pretrained
|
3 |
+
|
4 |
+
|
5 |
+
class CustomEncoderWav2vec2Classifier(Pretrained):
|
6 |
+
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
7 |
+
language-id, emotion recognition, keyword spotting, etc).
|
8 |
+
|
9 |
+
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
10 |
+
are defined in the yaml file. If you want to
|
11 |
+
convert the predicted index into a corresponding text label, please
|
12 |
+
provide the path of the label_encoder in a variable called 'lab_encoder_file'
|
13 |
+
within the yaml.
|
14 |
+
|
15 |
+
The class can be used either to run only the encoder (encode_batch()) to
|
16 |
+
extract embeddings or to run a classification step (classify_batch()).
|
17 |
+
```
|
18 |
+
|
19 |
+
Example
|
20 |
+
-------
|
21 |
+
>>> import torchaudio
|
22 |
+
>>> from speechbrain.pretrained import EncoderClassifier
|
23 |
+
>>> # Model is downloaded from the speechbrain HuggingFace repo
|
24 |
+
>>> tmpdir = getfixture("tmpdir")
|
25 |
+
>>> classifier = EncoderClassifier.from_hparams(
|
26 |
+
... source="speechbrain/spkrec-ecapa-voxceleb",
|
27 |
+
... savedir=tmpdir,
|
28 |
+
... )
|
29 |
+
|
30 |
+
>>> # Compute embeddings
|
31 |
+
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
|
32 |
+
>>> embeddings = classifier.encode_batch(signal)
|
33 |
+
|
34 |
+
>>> # Classification
|
35 |
+
>>> prediction = classifier .classify_batch(signal)
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, *args, **kwargs):
|
39 |
+
super().__init__(*args, **kwargs)
|
40 |
+
|
41 |
+
def encode_batch(self, wavs, wav_lens=None, normalize=False):
|
42 |
+
"""Encodes the input audio into a single vector embedding.
|
43 |
+
|
44 |
+
The waveforms should already be in the model's desired format.
|
45 |
+
You can call:
|
46 |
+
``normalized = <this>.normalizer(signal, sample_rate)``
|
47 |
+
to get a correctly converted signal in most cases.
|
48 |
+
|
49 |
+
Arguments
|
50 |
+
---------
|
51 |
+
wavs : torch.tensor
|
52 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
53 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
54 |
+
wav_lens : torch.tensor
|
55 |
+
Lengths of the waveforms relative to the longest one in the
|
56 |
+
batch, tensor of shape [batch]. The longest one should have
|
57 |
+
relative length 1.0 and others len(waveform) / max_length.
|
58 |
+
Used for ignoring padding.
|
59 |
+
normalize : bool
|
60 |
+
If True, it normalizes the embeddings with the statistics
|
61 |
+
contained in mean_var_norm_emb.
|
62 |
+
|
63 |
+
Returns
|
64 |
+
-------
|
65 |
+
torch.tensor
|
66 |
+
The encoded batch
|
67 |
+
"""
|
68 |
+
# Manage single waveforms in input
|
69 |
+
if len(wavs.shape) == 1:
|
70 |
+
wavs = wavs.unsqueeze(0)
|
71 |
+
|
72 |
+
# Assign full length if wav_lens is not assigned
|
73 |
+
if wav_lens is None:
|
74 |
+
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
75 |
+
|
76 |
+
# Storing waveform in the specified device
|
77 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
78 |
+
wavs = wavs.float()
|
79 |
+
|
80 |
+
# Computing features and embeddings
|
81 |
+
outputs = self.mods.wav2vec2(wavs)
|
82 |
+
|
83 |
+
# last dim will be used for AdaptativeAVG pool
|
84 |
+
outputs = self.mods.avg_pool(outputs, wav_lens)
|
85 |
+
outputs = outputs.view(outputs.shape[0], -1)
|
86 |
+
return outputs
|
87 |
+
|
88 |
+
def classify_batch(self, wavs, wav_lens=None):
|
89 |
+
"""Performs classification on the top of the encoded features.
|
90 |
+
|
91 |
+
It returns the posterior probabilities, the index and, if the label
|
92 |
+
encoder is specified it also the text label.
|
93 |
+
|
94 |
+
Arguments
|
95 |
+
---------
|
96 |
+
wavs : torch.tensor
|
97 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
98 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
99 |
+
wav_lens : torch.tensor
|
100 |
+
Lengths of the waveforms relative to the longest one in the
|
101 |
+
batch, tensor of shape [batch]. The longest one should have
|
102 |
+
relative length 1.0 and others len(waveform) / max_length.
|
103 |
+
Used for ignoring padding.
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
out_prob
|
108 |
+
The log posterior probabilities of each class ([batch, N_class])
|
109 |
+
score:
|
110 |
+
It is the value of the log-posterior for the best class ([batch,])
|
111 |
+
index
|
112 |
+
The indexes of the best class ([batch,])
|
113 |
+
text_lab:
|
114 |
+
List with the text labels corresponding to the indexes.
|
115 |
+
(label encoder should be provided).
|
116 |
+
"""
|
117 |
+
outputs = self.encode_batch(wavs, wav_lens)
|
118 |
+
outputs = self.mods.output_mlp(outputs)
|
119 |
+
out_prob = self.hparams.softmax(outputs)
|
120 |
+
score, index = torch.max(out_prob, dim=-1)
|
121 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
122 |
+
return out_prob, score, index, text_lab
|
123 |
+
|
124 |
+
def classify_file(self, path):
|
125 |
+
"""Classifies the given audiofile into the given set of labels.
|
126 |
+
|
127 |
+
Arguments
|
128 |
+
---------
|
129 |
+
path : str
|
130 |
+
Path to audio file to classify.
|
131 |
+
|
132 |
+
Returns
|
133 |
+
-------
|
134 |
+
out_prob
|
135 |
+
The log posterior probabilities of each class ([batch, N_class])
|
136 |
+
score:
|
137 |
+
It is the value of the log-posterior for the best class ([batch,])
|
138 |
+
index
|
139 |
+
The indexes of the best class ([batch,])
|
140 |
+
text_lab:
|
141 |
+
List with the text labels corresponding to the indexes.
|
142 |
+
(label encoder should be provided).
|
143 |
+
"""
|
144 |
+
waveform = self.load_audio(path)
|
145 |
+
# Fake a batch:
|
146 |
+
batch = waveform.unsqueeze(0)
|
147 |
+
rel_length = torch.tensor([1.0])
|
148 |
+
outputs = self.encode_batch(batch, rel_length)
|
149 |
+
outputs = self.mods.output_mlp(outputs).squeeze(1)
|
150 |
+
out_prob = self.hparams.softmax(outputs)
|
151 |
+
score, index = torch.max(out_prob, dim=-1)
|
152 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
153 |
+
return out_prob, score, index, text_lab
|
154 |
+
|
155 |
+
def forward(self, wavs, wav_lens=None, normalize=False):
|
156 |
+
return self.encode_batch(
|
157 |
+
wavs=wavs, wav_lens=wav_lens, normalize=normalize
|
158 |
+
)
|