updating the repo with the fine-tuned model
Browse files- README.md +85 -0
- all_results.json +7 -0
- classification_report +27 -0
- config.json +9 -9
- pytorch_model.bin +1 -1
- tokenizer_config.json +1 -1
- train_results.json +7 -0
- trainer_state.json +325 -0
- training_args.bin +2 -2
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: uwb_atcc
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# uwb_atcc
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0098
|
23 |
+
- Precision: 0.9760
|
24 |
+
- Recall: 0.9741
|
25 |
+
- F1: 0.9750
|
26 |
+
- Accuracy: 0.9965
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 1000
|
52 |
+
- training_steps: 10000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 0.03 | 500 | 0.2282 | 0.6818 | 0.7001 | 0.6908 | 0.9246 |
|
59 |
+
| 0.3487 | 0.06 | 1000 | 0.1214 | 0.8163 | 0.8024 | 0.8093 | 0.9631 |
|
60 |
+
| 0.3487 | 0.1 | 1500 | 0.0933 | 0.8496 | 0.8544 | 0.8520 | 0.9722 |
|
61 |
+
| 0.1124 | 0.13 | 2000 | 0.0693 | 0.8845 | 0.8739 | 0.8791 | 0.9786 |
|
62 |
+
| 0.1124 | 0.16 | 2500 | 0.0540 | 0.8993 | 0.8911 | 0.8952 | 0.9817 |
|
63 |
+
| 0.0667 | 0.19 | 3000 | 0.0474 | 0.9058 | 0.8929 | 0.8993 | 0.9857 |
|
64 |
+
| 0.0667 | 0.23 | 3500 | 0.0418 | 0.9221 | 0.9245 | 0.9233 | 0.9865 |
|
65 |
+
| 0.0492 | 0.26 | 4000 | 0.0294 | 0.9369 | 0.9415 | 0.9392 | 0.9903 |
|
66 |
+
| 0.0492 | 0.29 | 4500 | 0.0263 | 0.9512 | 0.9446 | 0.9479 | 0.9911 |
|
67 |
+
| 0.0372 | 0.32 | 5000 | 0.0223 | 0.9495 | 0.9497 | 0.9496 | 0.9915 |
|
68 |
+
| 0.0372 | 0.35 | 5500 | 0.0212 | 0.9530 | 0.9514 | 0.9522 | 0.9923 |
|
69 |
+
| 0.0308 | 0.39 | 6000 | 0.0177 | 0.9585 | 0.9560 | 0.9572 | 0.9933 |
|
70 |
+
| 0.0308 | 0.42 | 6500 | 0.0169 | 0.9619 | 0.9613 | 0.9616 | 0.9936 |
|
71 |
+
| 0.0261 | 0.45 | 7000 | 0.0140 | 0.9689 | 0.9662 | 0.9676 | 0.9951 |
|
72 |
+
| 0.0261 | 0.48 | 7500 | 0.0130 | 0.9652 | 0.9629 | 0.9641 | 0.9945 |
|
73 |
+
| 0.0214 | 0.51 | 8000 | 0.0127 | 0.9676 | 0.9635 | 0.9656 | 0.9953 |
|
74 |
+
| 0.0214 | 0.55 | 8500 | 0.0109 | 0.9714 | 0.9708 | 0.9711 | 0.9959 |
|
75 |
+
| 0.0177 | 0.58 | 9000 | 0.0103 | 0.9740 | 0.9727 | 0.9734 | 0.9961 |
|
76 |
+
| 0.0177 | 0.61 | 9500 | 0.0101 | 0.9768 | 0.9744 | 0.9756 | 0.9963 |
|
77 |
+
| 0.0159 | 0.64 | 10000 | 0.0098 | 0.9760 | 0.9741 | 0.9750 | 0.9965 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.24.0
|
83 |
+
- Pytorch 1.13.0+cu117
|
84 |
+
- Datasets 2.7.0
|
85 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.64,
|
3 |
+
"train_loss": 0.07261505832672119,
|
4 |
+
"train_runtime": 1985.8061,
|
5 |
+
"train_samples_per_second": 322.287,
|
6 |
+
"train_steps_per_second": 5.036
|
7 |
+
}
|
classification_report
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
************* Report B/I tags*************
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
B-atco 0.83 0.81 0.82 1356
|
5 |
+
B-pilot 0.79 0.89 0.83 1653
|
6 |
+
I-atco 0.95 0.90 0.93 13501
|
7 |
+
I-pilot 0.89 0.92 0.90 10216
|
8 |
+
|
9 |
+
accuracy 0.91 26726
|
10 |
+
macro avg 0.86 0.88 0.87 26726
|
11 |
+
weighted avg 0.91 0.91 0.91 26726
|
12 |
+
|
13 |
+
************ Report with merged classes ***********
|
14 |
+
precision recall f1-score support
|
15 |
+
|
16 |
+
atco 0.94 0.90 0.92 14857
|
17 |
+
pilot 0.88 0.93 0.90 11869
|
18 |
+
|
19 |
+
accuracy 0.91 26726
|
20 |
+
macro avg 0.91 0.91 0.91 26726
|
21 |
+
weighted avg 0.91 0.91 0.91 26726
|
22 |
+
|
23 |
+
|
24 |
+
JACCARD ERROR RATE (JER): [30.08233059 28.35603113 13.8444178 17.4533672 ]
|
25 |
+
JER - WEIGHTED : 16.945343251112565
|
26 |
+
|
27 |
+
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "experiments/
|
3 |
"architectures": [
|
4 |
"BertForTokenClassification"
|
5 |
],
|
@@ -10,20 +10,20 @@
|
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
12 |
"id2label": {
|
13 |
-
"0": "
|
14 |
-
"1": "
|
15 |
"2": "B-atco",
|
16 |
-
"3": "
|
17 |
-
"4": "
|
18 |
},
|
19 |
"initializer_range": 0.02,
|
20 |
"intermediate_size": 3072,
|
21 |
"label2id": {
|
22 |
"B-atco": 2,
|
23 |
-
"B-pilot":
|
24 |
-
"I-atco":
|
25 |
-
"I-pilot":
|
26 |
-
"O":
|
27 |
},
|
28 |
"layer_norm_eps": 1e-12,
|
29 |
"max_position_embeddings": 512,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
|
3 |
"architectures": [
|
4 |
"BertForTokenClassification"
|
5 |
],
|
|
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
"hidden_size": 768,
|
12 |
"id2label": {
|
13 |
+
"0": "O",
|
14 |
+
"1": "B-pilot",
|
15 |
"2": "B-atco",
|
16 |
+
"3": "I-pilot",
|
17 |
+
"4": "I-atco"
|
18 |
},
|
19 |
"initializer_range": 0.02,
|
20 |
"intermediate_size": 3072,
|
21 |
"label2id": {
|
22 |
"B-atco": 2,
|
23 |
+
"B-pilot": 1,
|
24 |
+
"I-atco": 4,
|
25 |
+
"I-pilot": 3,
|
26 |
+
"O": 0
|
27 |
},
|
28 |
"layer_norm_eps": 1e-12,
|
29 |
"max_position_embeddings": 512,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 435651309
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3046900d4cc6ddf1e891841510afdfa4c0c486f6e2c9519fd11ec583496f5f67
|
3 |
size 435651309
|
tokenizer_config.json
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
"do_lower_case": true,
|
4 |
"mask_token": "[MASK]",
|
5 |
"model_max_length": 512,
|
6 |
-
"name_or_path": "experiments/
|
7 |
"pad_token": "[PAD]",
|
8 |
"sep_token": "[SEP]",
|
9 |
"special_tokens_map_file": null,
|
|
|
3 |
"do_lower_case": true,
|
4 |
"mask_token": "[MASK]",
|
5 |
"model_max_length": 512,
|
6 |
+
"name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
|
7 |
"pad_token": "[PAD]",
|
8 |
"sep_token": "[SEP]",
|
9 |
"special_tokens_map_file": null,
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.64,
|
3 |
+
"train_loss": 0.07261505832672119,
|
4 |
+
"train_runtime": 1985.8061,
|
5 |
+
"train_samples_per_second": 322.287,
|
6 |
+
"train_steps_per_second": 5.036
|
7 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6432109088570143,
|
5 |
+
"global_step": 10000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.03,
|
12 |
+
"eval_accuracy": 0.9246465960844621,
|
13 |
+
"eval_f1": 0.6907879797138747,
|
14 |
+
"eval_loss": 0.22821231186389923,
|
15 |
+
"eval_precision": 0.6817570596145226,
|
16 |
+
"eval_recall": 0.7000613685179503,
|
17 |
+
"eval_runtime": 6.5662,
|
18 |
+
"eval_samples_per_second": 761.48,
|
19 |
+
"eval_steps_per_second": 47.669,
|
20 |
+
"step": 500
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.06,
|
24 |
+
"learning_rate": 5e-05,
|
25 |
+
"loss": 0.3487,
|
26 |
+
"step": 1000
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.06,
|
30 |
+
"eval_accuracy": 0.9631217838765008,
|
31 |
+
"eval_f1": 0.809284332688588,
|
32 |
+
"eval_loss": 0.12138580530881882,
|
33 |
+
"eval_precision": 0.8162946776962697,
|
34 |
+
"eval_recall": 0.8023933722000613,
|
35 |
+
"eval_runtime": 6.1509,
|
36 |
+
"eval_samples_per_second": 812.889,
|
37 |
+
"eval_steps_per_second": 50.887,
|
38 |
+
"step": 1000
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.1,
|
42 |
+
"eval_accuracy": 0.972200863547643,
|
43 |
+
"eval_f1": 0.8519850072668859,
|
44 |
+
"eval_loss": 0.09331324696540833,
|
45 |
+
"eval_precision": 0.849580472921434,
|
46 |
+
"eval_recall": 0.8544031911629334,
|
47 |
+
"eval_runtime": 6.1413,
|
48 |
+
"eval_samples_per_second": 814.163,
|
49 |
+
"eval_steps_per_second": 50.967,
|
50 |
+
"step": 1500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.13,
|
54 |
+
"learning_rate": 4.4444444444444447e-05,
|
55 |
+
"loss": 0.1124,
|
56 |
+
"step": 2000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.13,
|
60 |
+
"eval_accuracy": 0.9786478973206364,
|
61 |
+
"eval_f1": 0.879148016669239,
|
62 |
+
"eval_loss": 0.06928630918264389,
|
63 |
+
"eval_precision": 0.884472049689441,
|
64 |
+
"eval_recall": 0.873887695612151,
|
65 |
+
"eval_runtime": 6.1606,
|
66 |
+
"eval_samples_per_second": 811.616,
|
67 |
+
"eval_steps_per_second": 50.807,
|
68 |
+
"step": 2000
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.16,
|
72 |
+
"eval_accuracy": 0.9816939729106288,
|
73 |
+
"eval_f1": 0.8951911220715166,
|
74 |
+
"eval_loss": 0.05397827923297882,
|
75 |
+
"eval_precision": 0.899349643852586,
|
76 |
+
"eval_recall": 0.8910708806382326,
|
77 |
+
"eval_runtime": 6.3033,
|
78 |
+
"eval_samples_per_second": 793.233,
|
79 |
+
"eval_steps_per_second": 49.656,
|
80 |
+
"step": 2500
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.19,
|
84 |
+
"learning_rate": 3.888888888888889e-05,
|
85 |
+
"loss": 0.0667,
|
86 |
+
"step": 3000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.19,
|
90 |
+
"eval_accuracy": 0.9856568285325604,
|
91 |
+
"eval_f1": 0.8993278219887197,
|
92 |
+
"eval_loss": 0.0473916195333004,
|
93 |
+
"eval_precision": 0.9058365758754864,
|
94 |
+
"eval_recall": 0.8929119361767414,
|
95 |
+
"eval_runtime": 6.1626,
|
96 |
+
"eval_samples_per_second": 811.344,
|
97 |
+
"eval_steps_per_second": 50.79,
|
98 |
+
"step": 3000
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.23,
|
102 |
+
"eval_accuracy": 0.9864553143668303,
|
103 |
+
"eval_f1": 0.9233126484333103,
|
104 |
+
"eval_loss": 0.04179921746253967,
|
105 |
+
"eval_precision": 0.9221117061973986,
|
106 |
+
"eval_recall": 0.9245167229211415,
|
107 |
+
"eval_runtime": 6.1411,
|
108 |
+
"eval_samples_per_second": 814.192,
|
109 |
+
"eval_steps_per_second": 50.968,
|
110 |
+
"step": 3500
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.26,
|
114 |
+
"learning_rate": 3.3333333333333335e-05,
|
115 |
+
"loss": 0.0492,
|
116 |
+
"step": 4000
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.26,
|
120 |
+
"eval_accuracy": 0.9902850890163838,
|
121 |
+
"eval_f1": 0.9392408937863483,
|
122 |
+
"eval_loss": 0.02944410778582096,
|
123 |
+
"eval_precision": 0.9369465648854962,
|
124 |
+
"eval_recall": 0.9415464866523473,
|
125 |
+
"eval_runtime": 6.1192,
|
126 |
+
"eval_samples_per_second": 817.096,
|
127 |
+
"eval_steps_per_second": 51.15,
|
128 |
+
"step": 4000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.29,
|
132 |
+
"eval_accuracy": 0.9910687880759449,
|
133 |
+
"eval_f1": 0.9478869986914018,
|
134 |
+
"eval_loss": 0.026342397555708885,
|
135 |
+
"eval_precision": 0.9511818322261703,
|
136 |
+
"eval_recall": 0.944614912549862,
|
137 |
+
"eval_runtime": 6.3093,
|
138 |
+
"eval_samples_per_second": 792.485,
|
139 |
+
"eval_steps_per_second": 49.61,
|
140 |
+
"step": 4500
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.32,
|
144 |
+
"learning_rate": 2.777777777777778e-05,
|
145 |
+
"loss": 0.0372,
|
146 |
+
"step": 5000
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.32,
|
150 |
+
"eval_accuracy": 0.9915419648666233,
|
151 |
+
"eval_f1": 0.9496049704686661,
|
152 |
+
"eval_loss": 0.022303204983472824,
|
153 |
+
"eval_precision": 0.9495321368308023,
|
154 |
+
"eval_recall": 0.949677815280761,
|
155 |
+
"eval_runtime": 6.0806,
|
156 |
+
"eval_samples_per_second": 822.284,
|
157 |
+
"eval_steps_per_second": 51.475,
|
158 |
+
"step": 5000
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.35,
|
162 |
+
"eval_accuracy": 0.9923256639261844,
|
163 |
+
"eval_f1": 0.9521689059500958,
|
164 |
+
"eval_loss": 0.02121582068502903,
|
165 |
+
"eval_precision": 0.9529737206085753,
|
166 |
+
"eval_recall": 0.951365449524394,
|
167 |
+
"eval_runtime": 6.1313,
|
168 |
+
"eval_samples_per_second": 815.488,
|
169 |
+
"eval_steps_per_second": 51.05,
|
170 |
+
"step": 5500
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.39,
|
174 |
+
"learning_rate": 2.2222222222222223e-05,
|
175 |
+
"loss": 0.0308,
|
176 |
+
"step": 6000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.39,
|
180 |
+
"eval_accuracy": 0.993331164606376,
|
181 |
+
"eval_f1": 0.9572163760657499,
|
182 |
+
"eval_loss": 0.01765192300081253,
|
183 |
+
"eval_precision": 0.9584679280110752,
|
184 |
+
"eval_recall": 0.9559680883706658,
|
185 |
+
"eval_runtime": 6.2521,
|
186 |
+
"eval_samples_per_second": 799.734,
|
187 |
+
"eval_steps_per_second": 50.063,
|
188 |
+
"step": 6000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.42,
|
192 |
+
"eval_accuracy": 0.9936269001005501,
|
193 |
+
"eval_f1": 0.9616329036218538,
|
194 |
+
"eval_loss": 0.016909204423427582,
|
195 |
+
"eval_precision": 0.9619281547436291,
|
196 |
+
"eval_recall": 0.9613378336913163,
|
197 |
+
"eval_runtime": 6.055,
|
198 |
+
"eval_samples_per_second": 825.759,
|
199 |
+
"eval_steps_per_second": 51.693,
|
200 |
+
"step": 6500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.45,
|
204 |
+
"learning_rate": 1.6666666666666667e-05,
|
205 |
+
"loss": 0.0261,
|
206 |
+
"step": 7000
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.45,
|
210 |
+
"eval_accuracy": 0.9951055775714202,
|
211 |
+
"eval_f1": 0.9675833461361193,
|
212 |
+
"eval_loss": 0.013973040506243706,
|
213 |
+
"eval_precision": 0.9689230769230769,
|
214 |
+
"eval_recall": 0.9662473151273396,
|
215 |
+
"eval_runtime": 6.0884,
|
216 |
+
"eval_samples_per_second": 821.237,
|
217 |
+
"eval_steps_per_second": 51.409,
|
218 |
+
"step": 7000
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.48,
|
222 |
+
"eval_accuracy": 0.9945436801324895,
|
223 |
+
"eval_f1": 0.9640552995391705,
|
224 |
+
"eval_loss": 0.013004946522414684,
|
225 |
+
"eval_precision": 0.9652414641648723,
|
226 |
+
"eval_recall": 0.9628720466400736,
|
227 |
+
"eval_runtime": 6.2303,
|
228 |
+
"eval_samples_per_second": 802.527,
|
229 |
+
"eval_steps_per_second": 50.238,
|
230 |
+
"step": 7500
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.51,
|
234 |
+
"learning_rate": 1.1111111111111112e-05,
|
235 |
+
"loss": 0.0214,
|
236 |
+
"step": 8000
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.51,
|
240 |
+
"eval_accuracy": 0.9952534453185071,
|
241 |
+
"eval_f1": 0.965559655596556,
|
242 |
+
"eval_loss": 0.01268522348254919,
|
243 |
+
"eval_precision": 0.9676425269645609,
|
244 |
+
"eval_recall": 0.9634857318195765,
|
245 |
+
"eval_runtime": 6.0895,
|
246 |
+
"eval_samples_per_second": 821.082,
|
247 |
+
"eval_steps_per_second": 51.4,
|
248 |
+
"step": 8000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.55,
|
252 |
+
"eval_accuracy": 0.9958744898562726,
|
253 |
+
"eval_f1": 0.971147943523634,
|
254 |
+
"eval_loss": 0.010873218066990376,
|
255 |
+
"eval_precision": 0.9714461160577218,
|
256 |
+
"eval_recall": 0.9708499539736115,
|
257 |
+
"eval_runtime": 6.1229,
|
258 |
+
"eval_samples_per_second": 816.611,
|
259 |
+
"eval_steps_per_second": 51.12,
|
260 |
+
"step": 8500
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.58,
|
264 |
+
"learning_rate": 5.555555555555556e-06,
|
265 |
+
"loss": 0.0177,
|
266 |
+
"step": 9000
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.58,
|
270 |
+
"eval_accuracy": 0.9961406518010292,
|
271 |
+
"eval_f1": 0.9733630152759652,
|
272 |
+
"eval_loss": 0.010330266319215298,
|
273 |
+
"eval_precision": 0.9740359502227685,
|
274 |
+
"eval_recall": 0.9726910095121203,
|
275 |
+
"eval_runtime": 6.0936,
|
276 |
+
"eval_samples_per_second": 820.536,
|
277 |
+
"eval_steps_per_second": 51.366,
|
278 |
+
"step": 9000
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.61,
|
282 |
+
"eval_accuracy": 0.9963328798722423,
|
283 |
+
"eval_f1": 0.9755760368663594,
|
284 |
+
"eval_loss": 0.010118774138391018,
|
285 |
+
"eval_precision": 0.9767763764995386,
|
286 |
+
"eval_recall": 0.9743786437557533,
|
287 |
+
"eval_runtime": 6.2563,
|
288 |
+
"eval_samples_per_second": 799.199,
|
289 |
+
"eval_steps_per_second": 50.03,
|
290 |
+
"step": 9500
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.64,
|
294 |
+
"learning_rate": 0.0,
|
295 |
+
"loss": 0.0159,
|
296 |
+
"step": 10000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.64,
|
300 |
+
"eval_accuracy": 0.9965251079434554,
|
301 |
+
"eval_f1": 0.9750441526529986,
|
302 |
+
"eval_loss": 0.009783624671399593,
|
303 |
+
"eval_precision": 0.9760184473481937,
|
304 |
+
"eval_recall": 0.9740718011660019,
|
305 |
+
"eval_runtime": 6.0731,
|
306 |
+
"eval_samples_per_second": 823.307,
|
307 |
+
"eval_steps_per_second": 51.539,
|
308 |
+
"step": 10000
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.64,
|
312 |
+
"step": 10000,
|
313 |
+
"total_flos": 2.25374565312e+16,
|
314 |
+
"train_loss": 0.07261505832672119,
|
315 |
+
"train_runtime": 1985.8061,
|
316 |
+
"train_samples_per_second": 322.287,
|
317 |
+
"train_steps_per_second": 5.036
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"max_steps": 10000,
|
321 |
+
"num_train_epochs": 1,
|
322 |
+
"total_flos": 2.25374565312e+16,
|
323 |
+
"trial_name": null,
|
324 |
+
"trial_params": null
|
325 |
+
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f1e174eb0134e9ea6d50af2aeb815175787e869220991a36ce7eeb1be2851c9
|
3 |
+
size 3387
|