Jzuluaga commited on
Commit
edb315f
1 Parent(s): aa6556f

updating the repo with the fine-tuned model

Browse files
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: uwb_atcc
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # uwb_atcc
19
+
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0098
23
+ - Precision: 0.9760
24
+ - Recall: 0.9741
25
+ - F1: 0.9750
26
+ - Accuracy: 0.9965
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 1000
52
+ - training_steps: 10000
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 0.03 | 500 | 0.2282 | 0.6818 | 0.7001 | 0.6908 | 0.9246 |
59
+ | 0.3487 | 0.06 | 1000 | 0.1214 | 0.8163 | 0.8024 | 0.8093 | 0.9631 |
60
+ | 0.3487 | 0.1 | 1500 | 0.0933 | 0.8496 | 0.8544 | 0.8520 | 0.9722 |
61
+ | 0.1124 | 0.13 | 2000 | 0.0693 | 0.8845 | 0.8739 | 0.8791 | 0.9786 |
62
+ | 0.1124 | 0.16 | 2500 | 0.0540 | 0.8993 | 0.8911 | 0.8952 | 0.9817 |
63
+ | 0.0667 | 0.19 | 3000 | 0.0474 | 0.9058 | 0.8929 | 0.8993 | 0.9857 |
64
+ | 0.0667 | 0.23 | 3500 | 0.0418 | 0.9221 | 0.9245 | 0.9233 | 0.9865 |
65
+ | 0.0492 | 0.26 | 4000 | 0.0294 | 0.9369 | 0.9415 | 0.9392 | 0.9903 |
66
+ | 0.0492 | 0.29 | 4500 | 0.0263 | 0.9512 | 0.9446 | 0.9479 | 0.9911 |
67
+ | 0.0372 | 0.32 | 5000 | 0.0223 | 0.9495 | 0.9497 | 0.9496 | 0.9915 |
68
+ | 0.0372 | 0.35 | 5500 | 0.0212 | 0.9530 | 0.9514 | 0.9522 | 0.9923 |
69
+ | 0.0308 | 0.39 | 6000 | 0.0177 | 0.9585 | 0.9560 | 0.9572 | 0.9933 |
70
+ | 0.0308 | 0.42 | 6500 | 0.0169 | 0.9619 | 0.9613 | 0.9616 | 0.9936 |
71
+ | 0.0261 | 0.45 | 7000 | 0.0140 | 0.9689 | 0.9662 | 0.9676 | 0.9951 |
72
+ | 0.0261 | 0.48 | 7500 | 0.0130 | 0.9652 | 0.9629 | 0.9641 | 0.9945 |
73
+ | 0.0214 | 0.51 | 8000 | 0.0127 | 0.9676 | 0.9635 | 0.9656 | 0.9953 |
74
+ | 0.0214 | 0.55 | 8500 | 0.0109 | 0.9714 | 0.9708 | 0.9711 | 0.9959 |
75
+ | 0.0177 | 0.58 | 9000 | 0.0103 | 0.9740 | 0.9727 | 0.9734 | 0.9961 |
76
+ | 0.0177 | 0.61 | 9500 | 0.0101 | 0.9768 | 0.9744 | 0.9756 | 0.9963 |
77
+ | 0.0159 | 0.64 | 10000 | 0.0098 | 0.9760 | 0.9741 | 0.9750 | 0.9965 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.24.0
83
+ - Pytorch 1.13.0+cu117
84
+ - Datasets 2.7.0
85
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.64,
3
+ "train_loss": 0.07261505832672119,
4
+ "train_runtime": 1985.8061,
5
+ "train_samples_per_second": 322.287,
6
+ "train_steps_per_second": 5.036
7
+ }
classification_report ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ************* Report B/I tags*************
2
+ precision recall f1-score support
3
+
4
+ B-atco 0.83 0.81 0.82 1356
5
+ B-pilot 0.79 0.89 0.83 1653
6
+ I-atco 0.95 0.90 0.93 13501
7
+ I-pilot 0.89 0.92 0.90 10216
8
+
9
+ accuracy 0.91 26726
10
+ macro avg 0.86 0.88 0.87 26726
11
+ weighted avg 0.91 0.91 0.91 26726
12
+
13
+ ************ Report with merged classes ***********
14
+ precision recall f1-score support
15
+
16
+ atco 0.94 0.90 0.92 14857
17
+ pilot 0.88 0.93 0.90 11869
18
+
19
+ accuracy 0.91 26726
20
+ macro avg 0.91 0.91 0.91 26726
21
+ weighted avg 0.91 0.91 0.91 26726
22
+
23
+
24
+ JACCARD ERROR RATE (JER): [30.08233059 28.35603113 13.8444178 17.4533672 ]
25
+ JER - WEIGHTED : 16.945343251112565
26
+
27
+
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "experiments/results/augmented/bert-base-uncased/1234/uwb_atcc/final_checkpoint/",
3
  "architectures": [
4
  "BertForTokenClassification"
5
  ],
@@ -10,20 +10,20 @@
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
12
  "id2label": {
13
- "0": "I-atco",
14
- "1": "I-pilot",
15
  "2": "B-atco",
16
- "3": "B-pilot",
17
- "4": "O"
18
  },
19
  "initializer_range": 0.02,
20
  "intermediate_size": 3072,
21
  "label2id": {
22
  "B-atco": 2,
23
- "B-pilot": 3,
24
- "I-atco": 0,
25
- "I-pilot": 1,
26
- "O": 4
27
  },
28
  "layer_norm_eps": 1e-12,
29
  "max_position_embeddings": 512,
 
1
  {
2
+ "_name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
3
  "architectures": [
4
  "BertForTokenClassification"
5
  ],
 
10
  "hidden_dropout_prob": 0.1,
11
  "hidden_size": 768,
12
  "id2label": {
13
+ "0": "O",
14
+ "1": "B-pilot",
15
  "2": "B-atco",
16
+ "3": "I-pilot",
17
+ "4": "I-atco"
18
  },
19
  "initializer_range": 0.02,
20
  "intermediate_size": 3072,
21
  "label2id": {
22
  "B-atco": 2,
23
+ "B-pilot": 1,
24
+ "I-atco": 4,
25
+ "I-pilot": 3,
26
+ "O": 0
27
  },
28
  "layer_norm_eps": 1e-12,
29
  "max_position_embeddings": 512,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f20b48ff65ec066179d91cd95b2fa2ce74140945d6573d6e94fd735ed4b1991e
3
  size 435651309
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3046900d4cc6ddf1e891841510afdfa4c0c486f6e2c9519fd11ec583496f5f67
3
  size 435651309
tokenizer_config.json CHANGED
@@ -3,7 +3,7 @@
3
  "do_lower_case": true,
4
  "mask_token": "[MASK]",
5
  "model_max_length": 512,
6
- "name_or_path": "experiments/results/augmented/bert-base-uncased/1234/uwb_atcc/final_checkpoint/",
7
  "pad_token": "[PAD]",
8
  "sep_token": "[SEP]",
9
  "special_tokens_map_file": null,
 
3
  "do_lower_case": true,
4
  "mask_token": "[MASK]",
5
  "model_max_length": 512,
6
+ "name_or_path": "experiments/for_hf/bert-base-uncased/1234/uwb_atcc//",
7
  "pad_token": "[PAD]",
8
  "sep_token": "[SEP]",
9
  "special_tokens_map_file": null,
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.64,
3
+ "train_loss": 0.07261505832672119,
4
+ "train_runtime": 1985.8061,
5
+ "train_samples_per_second": 322.287,
6
+ "train_steps_per_second": 5.036
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6432109088570143,
5
+ "global_step": 10000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "eval_accuracy": 0.9246465960844621,
13
+ "eval_f1": 0.6907879797138747,
14
+ "eval_loss": 0.22821231186389923,
15
+ "eval_precision": 0.6817570596145226,
16
+ "eval_recall": 0.7000613685179503,
17
+ "eval_runtime": 6.5662,
18
+ "eval_samples_per_second": 761.48,
19
+ "eval_steps_per_second": 47.669,
20
+ "step": 500
21
+ },
22
+ {
23
+ "epoch": 0.06,
24
+ "learning_rate": 5e-05,
25
+ "loss": 0.3487,
26
+ "step": 1000
27
+ },
28
+ {
29
+ "epoch": 0.06,
30
+ "eval_accuracy": 0.9631217838765008,
31
+ "eval_f1": 0.809284332688588,
32
+ "eval_loss": 0.12138580530881882,
33
+ "eval_precision": 0.8162946776962697,
34
+ "eval_recall": 0.8023933722000613,
35
+ "eval_runtime": 6.1509,
36
+ "eval_samples_per_second": 812.889,
37
+ "eval_steps_per_second": 50.887,
38
+ "step": 1000
39
+ },
40
+ {
41
+ "epoch": 0.1,
42
+ "eval_accuracy": 0.972200863547643,
43
+ "eval_f1": 0.8519850072668859,
44
+ "eval_loss": 0.09331324696540833,
45
+ "eval_precision": 0.849580472921434,
46
+ "eval_recall": 0.8544031911629334,
47
+ "eval_runtime": 6.1413,
48
+ "eval_samples_per_second": 814.163,
49
+ "eval_steps_per_second": 50.967,
50
+ "step": 1500
51
+ },
52
+ {
53
+ "epoch": 0.13,
54
+ "learning_rate": 4.4444444444444447e-05,
55
+ "loss": 0.1124,
56
+ "step": 2000
57
+ },
58
+ {
59
+ "epoch": 0.13,
60
+ "eval_accuracy": 0.9786478973206364,
61
+ "eval_f1": 0.879148016669239,
62
+ "eval_loss": 0.06928630918264389,
63
+ "eval_precision": 0.884472049689441,
64
+ "eval_recall": 0.873887695612151,
65
+ "eval_runtime": 6.1606,
66
+ "eval_samples_per_second": 811.616,
67
+ "eval_steps_per_second": 50.807,
68
+ "step": 2000
69
+ },
70
+ {
71
+ "epoch": 0.16,
72
+ "eval_accuracy": 0.9816939729106288,
73
+ "eval_f1": 0.8951911220715166,
74
+ "eval_loss": 0.05397827923297882,
75
+ "eval_precision": 0.899349643852586,
76
+ "eval_recall": 0.8910708806382326,
77
+ "eval_runtime": 6.3033,
78
+ "eval_samples_per_second": 793.233,
79
+ "eval_steps_per_second": 49.656,
80
+ "step": 2500
81
+ },
82
+ {
83
+ "epoch": 0.19,
84
+ "learning_rate": 3.888888888888889e-05,
85
+ "loss": 0.0667,
86
+ "step": 3000
87
+ },
88
+ {
89
+ "epoch": 0.19,
90
+ "eval_accuracy": 0.9856568285325604,
91
+ "eval_f1": 0.8993278219887197,
92
+ "eval_loss": 0.0473916195333004,
93
+ "eval_precision": 0.9058365758754864,
94
+ "eval_recall": 0.8929119361767414,
95
+ "eval_runtime": 6.1626,
96
+ "eval_samples_per_second": 811.344,
97
+ "eval_steps_per_second": 50.79,
98
+ "step": 3000
99
+ },
100
+ {
101
+ "epoch": 0.23,
102
+ "eval_accuracy": 0.9864553143668303,
103
+ "eval_f1": 0.9233126484333103,
104
+ "eval_loss": 0.04179921746253967,
105
+ "eval_precision": 0.9221117061973986,
106
+ "eval_recall": 0.9245167229211415,
107
+ "eval_runtime": 6.1411,
108
+ "eval_samples_per_second": 814.192,
109
+ "eval_steps_per_second": 50.968,
110
+ "step": 3500
111
+ },
112
+ {
113
+ "epoch": 0.26,
114
+ "learning_rate": 3.3333333333333335e-05,
115
+ "loss": 0.0492,
116
+ "step": 4000
117
+ },
118
+ {
119
+ "epoch": 0.26,
120
+ "eval_accuracy": 0.9902850890163838,
121
+ "eval_f1": 0.9392408937863483,
122
+ "eval_loss": 0.02944410778582096,
123
+ "eval_precision": 0.9369465648854962,
124
+ "eval_recall": 0.9415464866523473,
125
+ "eval_runtime": 6.1192,
126
+ "eval_samples_per_second": 817.096,
127
+ "eval_steps_per_second": 51.15,
128
+ "step": 4000
129
+ },
130
+ {
131
+ "epoch": 0.29,
132
+ "eval_accuracy": 0.9910687880759449,
133
+ "eval_f1": 0.9478869986914018,
134
+ "eval_loss": 0.026342397555708885,
135
+ "eval_precision": 0.9511818322261703,
136
+ "eval_recall": 0.944614912549862,
137
+ "eval_runtime": 6.3093,
138
+ "eval_samples_per_second": 792.485,
139
+ "eval_steps_per_second": 49.61,
140
+ "step": 4500
141
+ },
142
+ {
143
+ "epoch": 0.32,
144
+ "learning_rate": 2.777777777777778e-05,
145
+ "loss": 0.0372,
146
+ "step": 5000
147
+ },
148
+ {
149
+ "epoch": 0.32,
150
+ "eval_accuracy": 0.9915419648666233,
151
+ "eval_f1": 0.9496049704686661,
152
+ "eval_loss": 0.022303204983472824,
153
+ "eval_precision": 0.9495321368308023,
154
+ "eval_recall": 0.949677815280761,
155
+ "eval_runtime": 6.0806,
156
+ "eval_samples_per_second": 822.284,
157
+ "eval_steps_per_second": 51.475,
158
+ "step": 5000
159
+ },
160
+ {
161
+ "epoch": 0.35,
162
+ "eval_accuracy": 0.9923256639261844,
163
+ "eval_f1": 0.9521689059500958,
164
+ "eval_loss": 0.02121582068502903,
165
+ "eval_precision": 0.9529737206085753,
166
+ "eval_recall": 0.951365449524394,
167
+ "eval_runtime": 6.1313,
168
+ "eval_samples_per_second": 815.488,
169
+ "eval_steps_per_second": 51.05,
170
+ "step": 5500
171
+ },
172
+ {
173
+ "epoch": 0.39,
174
+ "learning_rate": 2.2222222222222223e-05,
175
+ "loss": 0.0308,
176
+ "step": 6000
177
+ },
178
+ {
179
+ "epoch": 0.39,
180
+ "eval_accuracy": 0.993331164606376,
181
+ "eval_f1": 0.9572163760657499,
182
+ "eval_loss": 0.01765192300081253,
183
+ "eval_precision": 0.9584679280110752,
184
+ "eval_recall": 0.9559680883706658,
185
+ "eval_runtime": 6.2521,
186
+ "eval_samples_per_second": 799.734,
187
+ "eval_steps_per_second": 50.063,
188
+ "step": 6000
189
+ },
190
+ {
191
+ "epoch": 0.42,
192
+ "eval_accuracy": 0.9936269001005501,
193
+ "eval_f1": 0.9616329036218538,
194
+ "eval_loss": 0.016909204423427582,
195
+ "eval_precision": 0.9619281547436291,
196
+ "eval_recall": 0.9613378336913163,
197
+ "eval_runtime": 6.055,
198
+ "eval_samples_per_second": 825.759,
199
+ "eval_steps_per_second": 51.693,
200
+ "step": 6500
201
+ },
202
+ {
203
+ "epoch": 0.45,
204
+ "learning_rate": 1.6666666666666667e-05,
205
+ "loss": 0.0261,
206
+ "step": 7000
207
+ },
208
+ {
209
+ "epoch": 0.45,
210
+ "eval_accuracy": 0.9951055775714202,
211
+ "eval_f1": 0.9675833461361193,
212
+ "eval_loss": 0.013973040506243706,
213
+ "eval_precision": 0.9689230769230769,
214
+ "eval_recall": 0.9662473151273396,
215
+ "eval_runtime": 6.0884,
216
+ "eval_samples_per_second": 821.237,
217
+ "eval_steps_per_second": 51.409,
218
+ "step": 7000
219
+ },
220
+ {
221
+ "epoch": 0.48,
222
+ "eval_accuracy": 0.9945436801324895,
223
+ "eval_f1": 0.9640552995391705,
224
+ "eval_loss": 0.013004946522414684,
225
+ "eval_precision": 0.9652414641648723,
226
+ "eval_recall": 0.9628720466400736,
227
+ "eval_runtime": 6.2303,
228
+ "eval_samples_per_second": 802.527,
229
+ "eval_steps_per_second": 50.238,
230
+ "step": 7500
231
+ },
232
+ {
233
+ "epoch": 0.51,
234
+ "learning_rate": 1.1111111111111112e-05,
235
+ "loss": 0.0214,
236
+ "step": 8000
237
+ },
238
+ {
239
+ "epoch": 0.51,
240
+ "eval_accuracy": 0.9952534453185071,
241
+ "eval_f1": 0.965559655596556,
242
+ "eval_loss": 0.01268522348254919,
243
+ "eval_precision": 0.9676425269645609,
244
+ "eval_recall": 0.9634857318195765,
245
+ "eval_runtime": 6.0895,
246
+ "eval_samples_per_second": 821.082,
247
+ "eval_steps_per_second": 51.4,
248
+ "step": 8000
249
+ },
250
+ {
251
+ "epoch": 0.55,
252
+ "eval_accuracy": 0.9958744898562726,
253
+ "eval_f1": 0.971147943523634,
254
+ "eval_loss": 0.010873218066990376,
255
+ "eval_precision": 0.9714461160577218,
256
+ "eval_recall": 0.9708499539736115,
257
+ "eval_runtime": 6.1229,
258
+ "eval_samples_per_second": 816.611,
259
+ "eval_steps_per_second": 51.12,
260
+ "step": 8500
261
+ },
262
+ {
263
+ "epoch": 0.58,
264
+ "learning_rate": 5.555555555555556e-06,
265
+ "loss": 0.0177,
266
+ "step": 9000
267
+ },
268
+ {
269
+ "epoch": 0.58,
270
+ "eval_accuracy": 0.9961406518010292,
271
+ "eval_f1": 0.9733630152759652,
272
+ "eval_loss": 0.010330266319215298,
273
+ "eval_precision": 0.9740359502227685,
274
+ "eval_recall": 0.9726910095121203,
275
+ "eval_runtime": 6.0936,
276
+ "eval_samples_per_second": 820.536,
277
+ "eval_steps_per_second": 51.366,
278
+ "step": 9000
279
+ },
280
+ {
281
+ "epoch": 0.61,
282
+ "eval_accuracy": 0.9963328798722423,
283
+ "eval_f1": 0.9755760368663594,
284
+ "eval_loss": 0.010118774138391018,
285
+ "eval_precision": 0.9767763764995386,
286
+ "eval_recall": 0.9743786437557533,
287
+ "eval_runtime": 6.2563,
288
+ "eval_samples_per_second": 799.199,
289
+ "eval_steps_per_second": 50.03,
290
+ "step": 9500
291
+ },
292
+ {
293
+ "epoch": 0.64,
294
+ "learning_rate": 0.0,
295
+ "loss": 0.0159,
296
+ "step": 10000
297
+ },
298
+ {
299
+ "epoch": 0.64,
300
+ "eval_accuracy": 0.9965251079434554,
301
+ "eval_f1": 0.9750441526529986,
302
+ "eval_loss": 0.009783624671399593,
303
+ "eval_precision": 0.9760184473481937,
304
+ "eval_recall": 0.9740718011660019,
305
+ "eval_runtime": 6.0731,
306
+ "eval_samples_per_second": 823.307,
307
+ "eval_steps_per_second": 51.539,
308
+ "step": 10000
309
+ },
310
+ {
311
+ "epoch": 0.64,
312
+ "step": 10000,
313
+ "total_flos": 2.25374565312e+16,
314
+ "train_loss": 0.07261505832672119,
315
+ "train_runtime": 1985.8061,
316
+ "train_samples_per_second": 322.287,
317
+ "train_steps_per_second": 5.036
318
+ }
319
+ ],
320
+ "max_steps": 10000,
321
+ "num_train_epochs": 1,
322
+ "total_flos": 2.25374565312e+16,
323
+ "trial_name": null,
324
+ "trial_params": null
325
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3cdeb0168688c5472b0cbaf00553a863c3e5b65633186e334bcaaa59634e487a
3
- size 3451
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1e174eb0134e9ea6d50af2aeb815175787e869220991a36ce7eeb1be2851c9
3
+ size 3387