Jzuluaga commited on
Commit
220fdd6
1 Parent(s): a6940a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -10
README.md CHANGED
@@ -2,36 +2,133 @@
2
  license: apache-2.0
3
  tags:
4
  - automatic-speech-recognition
5
- - experiments/data/atcosim_corpus/train
6
  - generated_from_trainer
7
  metrics:
8
  - wer
9
  model-index:
10
- - name: 0.0ld_0.05ad_0.05attd_0.0fpd_0.03mtp_10mtl_0.0mfp_10mfl
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # 0.0ld_0.05ad_0.05attd_0.0fpd_0.03mtp_10mtl_0.0mfp_10mfl
18
 
19
- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the EXPERIMENTS/DATA/ATCOSIM_CORPUS/TRAIN - NA dataset.
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.0988
22
  - Wer: 0.0736
23
 
24
- ## Model description
25
 
26
- More information needed
 
 
 
 
 
 
 
 
27
 
28
  ## Intended uses & limitations
29
 
30
- More information needed
31
 
32
  ## Training and evaluation data
33
 
34
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
2
  license: apache-2.0
3
  tags:
4
  - automatic-speech-recognition
 
5
  - generated_from_trainer
6
  metrics:
7
  - wer
8
  model-index:
9
+ - name: wav2vec2-xls-r-300m-en-atc-atcosim
10
  results: []
11
  ---
12
 
13
+ # wav2vec2-xls-r-300m-en-atc-atcosim
 
14
 
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [ATCOSIM corpus](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus).
16
 
 
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.0988
19
  - Wer: 0.0736
20
 
21
+ Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822).
22
 
23
+ Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan
24
+
25
+ Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset.
26
+
27
+ Code — GitHub repository: https://github.com/idiap/w2v2-air-traffic
28
+
29
+ ## Usage
30
+
31
+ You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb
32
 
33
  ## Intended uses & limitations
34
 
35
+ This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.
36
 
37
  ## Training and evaluation data
38
 
39
+ See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model.
40
+
41
+ - We use the ATCOSIM dataset for fine-tuning this model. You can download the raw data here: https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
42
+
43
+ - However, do not worry, we have prepared the database in `Datasets format`. Here, [ATCOSIM CORPUS on HuggingFace](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus). You can scroll and check the train/test partitions, and even listen to some audios.
44
+
45
+ - If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/atcosim_corpus/blob/main/atc_data_loader.py).
46
+
47
+ ## Writing your own inference script
48
+
49
+
50
+ If you use language model, you need to install the KenLM bindings with:
51
+ ```bash
52
+ conda activate your_environment
53
+ pip install https://github.com/kpu/kenlm/archive/master.zip
54
+ ```
55
+
56
+ The snippet of code:
57
+
58
+ ```python
59
+ from datasets import load_dataset, load_metric, Audio
60
+ import torch
61
+ from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
62
+ import torchaudio.functional as F
63
+
64
+ USE_LM = False
65
+ DATASET_ID = "Jzuluaga/atcosim_corpus"
66
+ MODEL_ID = "Jzuluaga/wav2vec2-xls-r-300m-en-atc-atcosim"
67
+
68
+ # 1. Load the dataset
69
+ # we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
70
+ atcosim_corpus_test = load_dataset(DATASET_ID, "test", split="test")
71
+
72
+ # 2. Load the model
73
+ model = AutoModelForCTC.from_pretrained(MODEL_ID)
74
+
75
+ # 3. Load the processors, we offer support with LM, which should yield better resutls
76
+ if USE_LM:
77
+ processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
78
+ else:
79
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
80
+
81
+ # 4. Format the test sample
82
+ sample = next(iter(atcosim_corpus_test))
83
+ file_sampling_rate = sample['audio']['sampling_rate']
84
+
85
+ # resample if neccessary
86
+ if file_sampling_rate != 16000:
87
+ resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
88
+ else:
89
+ resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
90
+
91
+ input_values = processor(resampled_audio, return_tensors="pt").input_values
92
+
93
+ # 5. Run the forward pass in the model
94
+ with torch.no_grad():
95
+ logits = model(input_values).logits
96
+
97
+ # get the transcription with processor
98
+ if USE_LM:
99
+ transcription = processor.batch_decode(logits.numpy()).text
100
+ else:
101
+ pred_ids = torch.argmax(logits, dim=-1)
102
+ transcription = processor.batch_decode(pred_ids)
103
+
104
+ # print the output
105
+ print(transcription)
106
+ ```
107
+
108
+ # Cite us
109
+
110
+ If you use this code for your research, please cite our paper with:
111
+
112
+ ```
113
+ @article{zuluaga2022bertraffic,
114
+ title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
115
+ author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and Motlicek, Petr and Kleinert, Matthias and Helmke, Hartmut and Ohneiser, Oliver and Zhan, Qingran},
116
+ journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
117
+ year={2022}
118
+ }
119
+ ```
120
+
121
+ and,
122
+
123
+ ```
124
+ @article{zuluaga2022bertraffic,
125
+ title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
126
+ author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and Nigmatulina, Iuliia and Motlicek, Petr and Ondre, Karel and Ohneiser, Oliver and Helmke, Hartmut},
127
+ journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
128
+ year={2022}
129
+ }
130
+ ```
131
+
132
 
133
  ## Training procedure
134