Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,40 +1,8 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- unet
|
4 |
-
- pix2pix
|
5 |
-
- pytorch
|
6 |
-
library_name: pytorch
|
7 |
-
license: wtfpl
|
8 |
-
datasets:
|
9 |
-
- K00B404/pix2pix_flux_set
|
10 |
-
language:
|
11 |
-
- en
|
12 |
-
pipeline_tag: image-to-image
|
13 |
-
---
|
14 |
-
|
15 |
# Pix2Pix UNet Model
|
16 |
|
17 |
-
## Model Description
|
18 |
-
Custom UNet model for Pix2Pix image translation.
|
19 |
- **Image Size:** 256
|
20 |
- **Model Type:** small_UNet (256)
|
21 |
-
|
22 |
-
## Usage
|
23 |
-
|
24 |
-
```python
|
25 |
-
import torch
|
26 |
-
from small_256_model import UNet as small_UNet
|
27 |
-
from big_1024_model import UNet as big_UNet
|
28 |
-
big = True
|
29 |
-
# Load the model
|
30 |
-
name='big_model_weights.pth' if big else 'small_model_weights.pth'
|
31 |
-
checkpoint = torch.load(name)
|
32 |
-
model = big_UNet() if checkpoint['model_config']['big'] else small_UNet()
|
33 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
34 |
-
model.eval()
|
35 |
-
|
36 |
-
Model Architecture
|
37 |
-
|
38 |
UNet(
|
39 |
(encoder): Sequential(
|
40 |
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
@@ -52,4 +20,4 @@ UNet(
|
|
52 |
(4): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
53 |
(5): Tanh()
|
54 |
)
|
55 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Pix2Pix UNet Model
|
2 |
|
|
|
|
|
3 |
- **Image Size:** 256
|
4 |
- **Model Type:** small_UNet (256)
|
5 |
+
## Model Architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
UNet(
|
7 |
(encoder): Sequential(
|
8 |
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
|
|
20 |
(4): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
|
21 |
(5): Tanh()
|
22 |
)
|
23 |
+
)
|