import torch import torch.nn as nn import torch.optim as optim class UNet(nn.Module): def __init__(self): super(UNet, self).__init__() # Encoder self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), # 256 -> 128 nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), # 128 -> 64 nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), # 64 -> 32 nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), # 32 -> 16 nn.ReLU(inplace=True), nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), # 16 -> 8 nn.ReLU(inplace=True) ) # Decoder self.decoder = nn.Sequential( nn.ConvTranspose2d(1024, 512, kernel_size=4, stride=2, padding=1), # 8 -> 16 nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1), # 16 -> 32 nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), # 32 -> 64 nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), # 64 -> 128 nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), # 128 -> 256 nn.Tanh() # Output range [-1, 1] ) def forward(self, x): enc = self.encoder(x) dec = self.decoder(enc) return dec