model documentation
Browse files
README.md
CHANGED
@@ -1,58 +1,223 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
-
|
5 |
-
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
---
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- ja
|
6 |
+
- en
|
7 |
+
|
8 |
+
tags:
|
9 |
+
- translation
|
10 |
+
|
11 |
+
widget:
|
12 |
+
- text: "ja2zh: 吾輩は猫である。名前はまだ無い。"
|
13 |
+
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Model Card for mt5-zh-ja-en-trimmed
|
18 |
+
|
19 |
+
# Model Details
|
20 |
+
|
21 |
+
## Model Description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
- **Developed by:** K024
|
26 |
+
- **Shared by [Optional]:** K024
|
27 |
+
- **Model type:** Translation
|
28 |
+
- **Language(s) (NLP):** Japanese, Chinease, English
|
29 |
+
- **License:** [cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
|
30 |
+
- **Parent Model:** [mt5-base](https://huggingface.co/google/mt5-base).
|
31 |
+
- **Resources for more information:**
|
32 |
+
- [mT5 GitHub Repo](https://github.com/google-research/multilingual-t5)
|
33 |
+
- [Associated Paper](https://arxiv.org/abs/2010.11934)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
# Uses
|
38 |
+
|
39 |
+
|
40 |
+
## Direct Use
|
41 |
+
This model can be used for the task of translation.
|
42 |
+
|
43 |
+
## Downstream Use [Optional]
|
44 |
+
|
45 |
+
More information needed.
|
46 |
+
|
47 |
+
## Out-of-Scope Use
|
48 |
+
|
49 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
50 |
+
|
51 |
+
# Bias, Risks, and Limitations
|
52 |
+
|
53 |
+
|
54 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
## Recommendations
|
59 |
+
|
60 |
+
|
61 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
62 |
+
|
63 |
+
# Training Details
|
64 |
+
|
65 |
+
## Training Data
|
66 |
+
|
67 |
+
The model vocabulary is trimmed to ~1/3 by selecting top 85000 tokens in the training data. The code to trim the vocabulary can be found [here](https://gist.github.com/K024/4a100a0f4f4b07208958e0f3244da6ad).
|
68 |
+
|
69 |
+
```
|
70 |
+
wikimedia-en-ja
|
71 |
+
wikimedia-en-zh
|
72 |
+
wikimedia-ja-zh
|
73 |
+
wikititles-ja-en
|
74 |
+
wikititles-zh-en
|
75 |
+
wikimatrix-ja-zh
|
76 |
+
news-commentary-en-ja
|
77 |
+
news-commentary-en-zh
|
78 |
+
news-commentary-ja-zh
|
79 |
+
ted2020-en-ja
|
80 |
+
ted2020-en-zh
|
81 |
+
ted2020-ja-zh
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
## Training Procedure
|
86 |
+
|
87 |
+
|
88 |
+
### Preprocessing
|
89 |
+
|
90 |
+
More information needed
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
### Speeds, Sizes, Times
|
95 |
+
This model is finetuned from [mt5-base](https://huggingface.co/google/mt5-base).
|
96 |
+
|
97 |
+
|
98 |
+
# Evaluation
|
99 |
+
|
100 |
+
|
101 |
+
## Testing Data, Factors & Metrics
|
102 |
+
|
103 |
+
### Testing Data
|
104 |
+
|
105 |
+
More information needed
|
106 |
+
|
107 |
+
|
108 |
+
### Factors
|
109 |
+
More information needed
|
110 |
+
|
111 |
+
### Metrics
|
112 |
+
|
113 |
+
More information needed
|
114 |
+
|
115 |
+
|
116 |
+
## Results
|
117 |
+
|
118 |
+
More information needed
|
119 |
+
|
120 |
+
|
121 |
+
# Model Examination
|
122 |
+
|
123 |
+
More information needed
|
124 |
+
|
125 |
+
# Environmental Impact
|
126 |
+
|
127 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
128 |
+
|
129 |
+
- **Hardware Type:** More information needed
|
130 |
+
- **Hours used:** More information needed
|
131 |
+
- **Cloud Provider:** More information needed
|
132 |
+
- **Compute Region:** More information needed
|
133 |
+
- **Carbon Emitted:** More information needed
|
134 |
+
|
135 |
+
# Technical Specifications [optional]
|
136 |
+
|
137 |
+
## Model Architecture and Objective
|
138 |
+
|
139 |
+
More information needed
|
140 |
+
|
141 |
+
## Compute Infrastructure
|
142 |
+
|
143 |
+
More information needed
|
144 |
+
|
145 |
+
### Hardware
|
146 |
+
|
147 |
+
|
148 |
+
More information needed
|
149 |
+
|
150 |
+
### Software
|
151 |
+
|
152 |
+
More information needed.
|
153 |
+
|
154 |
+
# Citation
|
155 |
+
|
156 |
+
|
157 |
+
**BibTeX:**
|
158 |
+
|
159 |
+
|
160 |
+
```bibtex
|
161 |
+
@misc{https://doi.org/10.48550/arxiv.2010.11934,
|
162 |
+
doi = {10.48550/ARXIV.2010.11934},
|
163 |
+
|
164 |
+
url = {https://arxiv.org/abs/2010.11934},
|
165 |
+
|
166 |
+
author = {Xue, Linting and Constant, Noah and Roberts, Adam and Kale, Mihir and Al-Rfou, Rami and Siddhant, Aditya and Barua, Aditya and Raffel, Colin},
|
167 |
+
|
168 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
169 |
+
|
170 |
+
title = {mT5: A massively multilingual pre-trained text-to-text transformer},
|
171 |
+
|
172 |
+
publisher = {arXiv},
|
173 |
+
|
174 |
+
year = {2020},
|
175 |
+
|
176 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
177 |
+
}
|
178 |
+
```
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
# Glossary [optional]
|
184 |
+
More information needed
|
185 |
+
|
186 |
+
# More Information [optional]
|
187 |
+
More information needed
|
188 |
+
|
189 |
+
|
190 |
+
# Model Card Authors [optional]
|
191 |
+
|
192 |
+
K024 in collaboration with Ezi Ozoani and the Hugging Face team
|
193 |
+
|
194 |
+
|
195 |
+
# Model Card Contact
|
196 |
+
|
197 |
+
More information needed
|
198 |
+
|
199 |
+
# How to Get Started with the Model
|
200 |
+
|
201 |
+
Use the code below to get started with the model.
|
202 |
+
|
203 |
+
<details>
|
204 |
+
<summary> Click to expand </summary>
|
205 |
+
|
206 |
+
```python
|
207 |
+
from transformers import (
|
208 |
+
T5Tokenizer,
|
209 |
+
MT5ForConditionalGeneration,
|
210 |
+
Text2TextGenerationPipeline,
|
211 |
+
)
|
212 |
+
|
213 |
+
path = "K024/mt5-zh-ja-en-trimmed"
|
214 |
+
pipe = Text2TextGenerationPipeline(
|
215 |
+
model=MT5ForConditionalGeneration.from_pretrained(path),
|
216 |
+
tokenizer=T5Tokenizer.from_pretrained(path),
|
217 |
+
)
|
218 |
+
|
219 |
+
sentence = "ja2zh: 吾輩は猫である。名前はまだ無い。"
|
220 |
+
res = pipe(sentence, max_length=100, num_beams=4)
|
221 |
+
res[0]['generated_text']
|
222 |
+
```
|
223 |
+
</details>
|