File size: 18,297 Bytes
503df11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
---

base_model: klue/roberta-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:574458
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
widget:
- source_sentence:  토마스의 책은 캐논에서 제외되었는가?
  sentences:
  - 나토는 북한의 핵실험이 세계 평화에 중대한 위협이라고 말한다
  -   많은 예수의 말을 캐논에서 제외시키는가?
  - 마이크로소프트는 올해  개발자인 커넥틱스로부터 가상 PC를 인수했다.
- source_sentence: 구글 네임 뉴모토롤라 이동성 CEO
  sentences:
  - 경찰 대변인인 에드워드 아리토낭 준장은 어제  다른  명이 자카르타에서,  다른  명은 자바 중부 마젤랑에서 체포되었다고 확인했다.
  - 구글은 데니스 우드사이드를 모토롤라 이동성 운영에 임명한다.
  -  소녀가 차에 뛰어오르고 있다.
- source_sentence: 나는 이따금 TV를 켜서 세상 돌아가는 일을 따라갈 것이다.
  sentences:
  - 그래서 나는 TV를 켜고 화장실에서 다시 들을  있고, 너는 세상에서 무슨 일이 일어나고 있는지 계속 알고 있어. 그래서 나는 CNN이나
    굿모닝 아메리카 같은 것을  거야. 하지만 가끔씩.
  -  남자가 등을 맞댄다.
  - 나는 침대에 누워 영화를 보기 위해 TV만 사용한다.
- source_sentence:  이야기는 고통스러울 정도로 진부할 것이기 때문에 고통스러울 정도로 짧을 것이다.
  sentences:
  -  일은 매우 길고 흥미로울 것이다.
  - 음-흠, 여기엔 가격이  괜찮은 지역 탁아소가 있지만 수도권에서는 수표를 작성하는 동안 머리에 총을 겨누고 있어
  - 이야기는 짧을 것이다.
- source_sentence:  소녀가 책을 읽는다.
  sentences:
  -  동네가 겨울 날씨를 즐기며 아이들과 즐거운 시간을 보내고 있다.
  -  소녀가 교실에서 다른 학생에게 책을 읽고 있다.
  - 어린 소녀가  구덩이에서 논다.
model-index:
- name: SentenceTransformer based on klue/roberta-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.8729482428052353
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8746302830344509
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.870886028839716
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8737323612076164
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8714644437376398
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8741693303098689
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8560781025117317
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8532116975486153
      name: Spearman Dot
    - type: pearson_max
      value: 0.8729482428052353
      name: Pearson Max
    - type: spearman_max
      value: 0.8746302830344509
      name: Spearman Max
---


# SentenceTransformer based on klue/roberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    '한 소녀가 책을 읽는다.',

    '한 소녀가 교실에서 다른 학생에게 책을 읽고 있다.',

    '어린 소녀가 공 구덩이에서 논다.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.8729     |

| spearman_cosine    | 0.8746     |
| pearson_manhattan  | 0.8709     |

| spearman_manhattan | 0.8737     |
| pearson_euclidean  | 0.8715     |

| spearman_euclidean | 0.8742     |
| pearson_dot        | 0.8561     |

| spearman_dot       | 0.8532     |
| pearson_max        | 0.8729     |

| **spearman_max**   | **0.8746** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Datasets



#### Unnamed Dataset





* Size: 568,640 training samples

* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | sentence_2                                                                        |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | string                                                                            |

  | details | <ul><li>min: 4 tokens</li><li>mean: 19.2 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.33 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.56 tokens</li><li>max: 54 tokens</li></ul> |

* Samples:

  | sentence_0                              | sentence_1                                       | sentence_2                            |
  |:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
  | <code>발생 부하가 함께 5% 적습니다.</code>         | <code>발생 부하의 5% 감소와 함께 11.</code>                | <code>발생 부하가 5% 증가합니다.</code>         |
  | <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code>      | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
  | <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code>   | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code>       |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```

#### Unnamed Dataset


* Size: 5,818 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 3 tokens</li><li>mean: 17.01 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.01 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                             | sentence_1                             | label                           |
  |:---------------------------------------|:---------------------------------------|:--------------------------------|
  | <code>터키 대통령은 침착함을 호소한다.</code>        | <code>텍사스 하우스, 낙태법 임시 승인</code>        | <code>0.0</code>                |
  | <code>볼리우드는 루피 붕괴로 3분의 1의 비용 절감</code> | <code>볼리우드는 루피 위기가 물자 비용을 절감한다.</code> | <code>0.8400000000000001</code> |
  | <code>남자가 종이 접시를 잘랐다.</code>           | <code>남자가 종이 접시를 자르고 있다.</code>        | <code>0.96</code>               |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json

  {

      "loss_fct": "torch.nn.modules.loss.MSELoss"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `num_train_epochs`: 5
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: round_robin



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: round_robin



</details>



### Training Logs

| Epoch  | Step | Training Loss | sts-dev_spearman_max |

|:------:|:----:|:-------------:|:--------------------:|

| 0.3434 | 500  | 0.4227        | -                    |

| 0.6868 | 1000 | 0.2996        | 0.8614               |

| 1.0007 | 1457 | -             | 0.8696               |

| 1.0295 | 1500 | 0.2653        | -                    |

| 1.3729 | 2000 | 0.1352        | 0.8671               |

| 1.7163 | 2500 | 0.0866        | -                    |

| 2.0007 | 2914 | -             | 0.8735               |

| 2.0591 | 3000 | 0.0671        | 0.8712               |

| 2.4025 | 3500 | 0.0387        | -                    |

| 2.7459 | 4000 | 0.0404        | 0.8746               |





### Framework Versions

- Python: 3.11.9

- Sentence Transformers: 3.0.1

- Transformers: 4.41.2

- PyTorch: 2.2.2+cu121

- Accelerate: 0.31.0

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->