metadata
license: mit
datasets:
- detection-datasets/coco
Introduction
This repository stores the model for YOLOv4-CSP-Mish, compatible with Kalray's neural network API.
Please see www.github.com/kalray/kann-models-zoo for details and proper usage.
Contents
- ONNX: yolov4-csp-mish_608x608.optimized.onnx
Lecture note reference
- YOLOv4: Optimal Speed and Accuracy of Object Detection, https://arxiv.org/pdf/2004.10934.pdf
Repository or links references
- repository: https://github.com/WongKinYiu/PyTorch_YOLOv4
- cfg: https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-mish.cfg
- weights: https://drive.google.com/file/d/17pQoMfJYbroYqxb6grem2SDY7pZIJPrN/view?usp=sharing
BibTeX entry and citation info
@misc{bochkovskiy2020yolov4,
title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
year={2020},
eprint={2004.10934},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{Wang_2021_CVPR,
author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {13029-13038}
}