--- license: mit datasets: - detection-datasets/coco --- # Introduction This repository stores the model for YOLOv4-CSP-Mish, compatible with Kalray's neural network API.
Please see www.github.com/kalray/kann-models-zoo for details and proper usage.
# Contents - ONNX: yolov4-csp-mish_608x608.optimized.onnx # Lecture note reference + YOLOv4: Optimal Speed and Accuracy of Object Detection, https://arxiv.org/pdf/2004.10934.pdf # Repository or links references - repository: https://github.com/WongKinYiu/PyTorch_YOLOv4 - cfg: https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-mish.cfg - weights: https://drive.google.com/file/d/17pQoMfJYbroYqxb6grem2SDY7pZIJPrN/view?usp=sharing BibTeX entry and citation info ``` @misc{bochkovskiy2020yolov4, title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, year={2020}, eprint={2004.10934}, archivePrefix={arXiv}, primaryClass={cs.CV} } @InProceedings{Wang_2021_CVPR, author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2021}, pages = {13029-13038} } ```