Kamtera commited on
Commit
34e7c0c
1 Parent(s): 21c7f64

Create train_vits-0.py

Browse files
Files changed (1) hide show
  1. train_vits-0.py +144 -0
train_vits-0.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from trainer import Trainer, TrainerArgs
4
+
5
+ from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
6
+ from TTS.config.shared_configs import BaseAudioConfig
7
+ from TTS.tts.configs.vits_config import VitsConfig
8
+ from TTS.tts.datasets import load_tts_samples
9
+ from TTS.tts.models.vits import Vits, VitsAudioConfig
10
+ from TTS.tts.utils.text.tokenizer import TTSTokenizer
11
+ from TTS.utils.audio import AudioProcessor
12
+ from TTS.tts.utils.speakers import SpeakerManager
13
+
14
+
15
+ output_path = os.path.dirname(os.path.abspath(__file__))
16
+
17
+
18
+ dataset_names={
19
+ "persian-tts-dataset-famale":"dilara",
20
+ "persian-tts-dataset":"changiz",
21
+ "persian-tts-dataset-male":"farid"
22
+ }
23
+ def mozilla_with_speaker(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
24
+ """Normalizes Mozilla meta data files to TTS format"""
25
+ txt_file = os.path.join(root_path, meta_file)
26
+ items = []
27
+ speaker_name = dataset_names[os.path.basename(root_path)]
28
+ with open(txt_file, "r", encoding="utf-8") as ttf:
29
+ for line in ttf:
30
+ cols = line.split("|")
31
+ wav_file = cols[1].strip()
32
+ text = cols[0].strip()
33
+ wav_file = os.path.join(root_path, "wavs", wav_file)
34
+ items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path})
35
+ return items
36
+
37
+
38
+ dataset_config1 = BaseDatasetConfig(
39
+ meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-famale"
40
+ )
41
+
42
+ dataset_config2 = BaseDatasetConfig(
43
+ meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset"
44
+ )
45
+
46
+ dataset_config3 = BaseDatasetConfig(
47
+ meta_file_train="metadata.csv", path="/kaggle/input/persian-tts-dataset-male"
48
+ )
49
+
50
+
51
+
52
+ audio_config = BaseAudioConfig(
53
+ sample_rate=22050,
54
+ do_trim_silence=False,
55
+ resample=False,
56
+ mel_fmin=0,
57
+ mel_fmax=None
58
+ )
59
+ character_config=CharactersConfig(
60
+ characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
61
+ punctuations='!(),-.:;? ̠،؛؟‌<>',
62
+ phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}',
63
+ pad="<PAD>",
64
+ eos="<EOS>",
65
+ bos="<BOS>",
66
+ blank="<BLNK>",
67
+ characters_class="TTS.tts.utils.text.characters.IPAPhonemes",
68
+ )
69
+ config = VitsConfig(
70
+ audio=audio_config,
71
+ run_name="vits_fa_female",
72
+ batch_size=16,
73
+ eval_batch_size=8,
74
+ batch_group_size=5,
75
+ num_loader_workers=0,
76
+ num_eval_loader_workers=2,
77
+ run_eval=True,
78
+ test_delay_epochs=-1,
79
+ epochs=1000,
80
+ save_step=1000,
81
+ text_cleaner="basic_cleaners",
82
+ use_phonemes=True,
83
+ phoneme_language="fa",
84
+ characters=character_config,
85
+ phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
86
+ compute_input_seq_cache=True,
87
+ print_step=25,
88
+ print_eval=True,
89
+ mixed_precision=False,
90
+ test_sentences=[
91
+ ["سلطان محمود در زمستانی سخت به طلخک گفت که: با این جامه ی یک لا در این سرما چه می کنی "],
92
+ ["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم."],
93
+ ["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز"],
94
+ ["یک بار هم از جهنم بگویید."],
95
+ ["یکی اسبی به عاریت خواست"]
96
+ ],
97
+ output_path=output_path,
98
+ datasets=[dataset_config1,dataset_config2,dataset_config3],
99
+ )
100
+
101
+ # INITIALIZE THE AUDIO PROCESSOR
102
+ # Audio processor is used for feature extraction and audio I/O.
103
+ # It mainly serves to the dataloader and the training loggers.
104
+ ap = AudioProcessor.init_from_config(config)
105
+
106
+ # INITIALIZE THE TOKENIZER
107
+ # Tokenizer is used to convert text to sequences of token IDs.
108
+ # config is updated with the default characters if not defined in the config.
109
+ tokenizer, config = TTSTokenizer.init_from_config(config)
110
+
111
+ # LOAD DATA SAMPLES
112
+ # Each sample is a list of ```[text, audio_file_path, speaker_name]```
113
+ # You can define your custom sample loader returning the list of samples.
114
+ # Or define your custom formatter and pass it to the `load_tts_samples`.
115
+ # Check `TTS.tts.datasets.load_tts_samples` for more details.
116
+ train_samples, eval_samples = load_tts_samples(
117
+ config.datasets,
118
+ formatter=mozilla_with_speaker,
119
+ eval_split=True,
120
+ eval_split_max_size=config.eval_split_max_size,
121
+ eval_split_size=config.eval_split_size,
122
+ )
123
+
124
+
125
+
126
+ speaker_manager = SpeakerManager()
127
+ speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
128
+ config.num_speakers = speaker_manager.num_speakers
129
+
130
+
131
+
132
+ # init model
133
+ model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
134
+
135
+ # init the trainer and 🚀
136
+ trainer = Trainer(
137
+ TrainerArgs(),
138
+ config,
139
+ output_path,
140
+ model=model,
141
+ train_samples=train_samples,
142
+ eval_samples=eval_samples,
143
+ )
144
+ trainer.fit()