File size: 14,859 Bytes
375fd17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
from __future__ import print_function
from __future__ import division
import torch
import torchvision
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import models
from torch.optim.lr_scheduler import ReduceLROnPlateau
from sklearn.utils import class_weight
from sklearn.metrics import precision_recall_fscore_support
import numpy as np
import time
import argparse
from tqdm import tqdm
from PIL import Image, ImageFile
from pathlib import Path
from augment import RandAug
import utils
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
# Much of the code is a modified version of the code available at
# https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
# nohup python train.py > logs/empty_cell_aug_28032024.txt 2>&1 &
# echo $! > logs/save_pid.txt
parser = argparse.ArgumentParser('arguments for training')
parser.add_argument('--tr_empty_folder', type=str, default="/data/taulukot/solukuvat/empty/train/",
help='path to training data with empty images')
parser.add_argument('--val_empty_folder', type=str, default="/data/taulukot/solukuvat/empty/val/",
help='path to validation data with empty images')
parser.add_argument('--tr_ok_folder', type=str, default="/data/taulukot/solukuvat/ok/train/",
help='path to training data with ok images')
parser.add_argument('--val_ok_folder', type=str, default="/data/taulukot/solukuvat/ok/val/",
help='path to validation data with ok images')
parser.add_argument('--results_folder', type=str, default="results/28032024_aug/",
help='Folder for saving training results.')
parser.add_argument('--save_model_path', type=str, default="./models/",
help='Path for saving model file.')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch size used for model training. ')
parser.add_argument('--lr', type=float, default=0.0001,
help='Base learning rate.')
parser.add_argument('--device', type=str, default='cpu',
help='Defines whether the model is trained using cpu or gpu.')
parser.add_argument('--num_classes', type=int, default=2,
help='Number of classes used in classification.')
parser.add_argument('--num_epochs', type=int, default=15,
help='Number of training epochs.')
parser.add_argument('--random_seed', type=int, default=8765,
help='Number used for initializing random number generation.')
parser.add_argument('--early_stop_threshold', type=int, default=3,
help='Threshold value of epochs after which training stops if validation accuracy does not improve.')
parser.add_argument('--save_model_format', type=str, default='torch',
help='Defines the format for saving the model.')
parser.add_argument('--augment_choice', type=str, default=None,
help='Defines which image augmentation(s) are used. Defaults to randomly selected augmentations.')
parser.add_argument('--model_name', type=str, default='aug_b32_lr0001',
help='Current date.')
parser.add_argument('--date', type=str, default=time.strftime("%d%m%Y"),
help='Current date.')
args = parser.parse_args()
# PIL settings to avoid errors caused by truncated and large images
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
# List for saving the names of damaged images
damaged_images = []
def get_datapaths():
"""Function for loading train and validation data."""
tr_empty_files = list(Path(args.tr_empty_folder).glob('*'))
tr_ok_files = list(Path(args.tr_ok_folder).glob('*'))
val_empty_files = list(Path(args.val_empty_folder).glob('*'))
val_ok_files = list(Path(args.val_ok_folder).glob('*'))
# Create labels for train and validation data
tr_labels = np.concatenate((np.zeros(len(tr_empty_files)), np.ones(len(tr_ok_files))))
val_labels = np.concatenate((np.zeros(len(val_empty_files)), np.ones(len(val_ok_files))))
# Combine faulty and non-faulty images
tr_files = tr_empty_files + tr_ok_files
val_files = val_empty_files + val_ok_files
print('\nTraining data with empty cells: ', len(tr_empty_files))
print('Training data without empty cells: ', len(tr_ok_files))
print('Validation data with empty cells: ', len(val_empty_files))
print('Validation data without empty cells: ', len(val_ok_files))
data_dict = {'tr_data': tr_files, 'tr_labels': tr_labels,
'val_data': val_files, 'val_labels': val_labels}
return data_dict
class ImageDataset(Dataset):
"""PyTorch Dataset class is used for generating training and validation datasets."""
def __init__(self, img_paths, img_labels, transform=None, target_transform=None):
self.img_paths = img_paths
self.img_labels = img_labels
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = self.img_paths[idx]
try:
image = Image.open(img_path).convert('RGB')
label = self.img_labels[idx]
except:
# Image is considered damaged if reading the image fails
damaged_images.append(img_path)
return None
if self.transform:
image = self.transform(image.convert("RGB"))
if self.target_transform:
label = self.target_transform(label)
return image, label
def initialize_model():
"""Function for initializing pretrained neural network model (DenseNet121)."""
model_ft = models.densenet121(weights=torchvision.models.DenseNet121_Weights.IMAGENET1K_V1)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, args.num_classes)
input_size = 224
return model_ft, input_size
def collate_fn(batch):
"""Helper function for creating data batches."""
batch = list(filter(lambda x: x is not None, batch))
return torch.utils.data.dataloader.default_collate(batch)
def initialize_dataloaders(data_dict, input_size):
"""Function for initializing datasets and dataloaders."""
# Train and validation datasets
train_dataset = ImageDataset(img_paths=data_dict['tr_data'], img_labels=data_dict['tr_labels'], transform=RandAug(input_size, args.augment_choice))
validation_dataset = ImageDataset(img_paths=data_dict['val_data'], img_labels=data_dict['val_labels'], transform=RandAug(input_size, 'identity'))
# Train and validation dataloaders
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=args.batch_size, shuffle=True, num_workers=4)
validation_dataloader = DataLoader(validation_dataset, collate_fn=collate_fn, batch_size=args.batch_size, shuffle=True, num_workers=4)
return {'train': train_dataloader, 'val': validation_dataloader}
def get_criterion(data_dict):
"""Function for generating class weights and initializing the loss function."""
y = np.asarray(data_dict['tr_labels'])
# Class weights are used for compensating the unbalance
# in the number of training data from the two classes
class_weights=class_weight.compute_class_weight(class_weight='balanced', classes=np.unique(y), y=y)
class_weights=torch.tensor(class_weights, dtype=torch.float).to(args.device)
print('\nClass weights: ', class_weights.tolist())
# Cross Entropy Loss function
criterion = nn.CrossEntropyLoss(weight=class_weights, reduction='mean')
return criterion
def get_optimizer(model):
"""Function for initializing the optimizer."""
# Model parameters are split into two groups: parameters of the classifier
# layer and other model parameters
params_1 = [param for name, param in model.named_parameters()
if name not in ["classifier.weight", "classifier.bias"]]
params_2 = model.classifier.parameters()
# 10 x larger learning rate is used when training the parameters
# of the classification layers
params_to_update = [
{'params': params_1, 'lr': args.lr},
{'params': params_2, 'lr': args.lr * 10}
]
# Adam optimizer
optimizer = torch.optim.Adam(params_to_update, args.lr)
# Scheduler reduces learning rate when validation accuracy does not improve for an epoch
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=0, verbose=True)
return optimizer, scheduler
def train_model(model, dataloaders, criterion, optimizer, scheduler=None):
"""Function for model training and validation."""
since = time.time()
# Lists for saving train and validation metrics for each epoch
tr_loss_history = []
tr_acc_history = []
tr_f1_history = []
val_loss_history = []
val_acc_history = []
val_f1_history = []
# Lists for saving learning rates for the 2 parameter groups
lr1_history = []
lr2_history = []
# Best F1 value and best epoch are saved in variables
best_f1 = 0
best_epoch = 0
early_stop = False
# Train / validation loop
for epoch in tqdm(range(args.num_epochs)):
# Save learning rates for the epoch
lr1_history.append(optimizer.param_groups[0]["lr"])
lr2_history.append(optimizer.param_groups[1]["lr"])
print('Epoch {}/{}'.format(epoch+1, args.num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
running_f1 = 0.0
# Iterate over data in batch
for inputs, labels in dataloaders[phase]:
if dataloaders[phase] is None:
continue
else:
inputs = inputs.to(args.device)
labels = labels.long().to(args.device)
# Zero the parameter gradients
optimizer.zero_grad()
# Track history only in training phase
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
outputs = model(inputs)
loss = criterion(outputs, labels)
# Model predictions of the image labels for the batch
_, preds = torch.max(outputs, 1)
# Backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# Get weighted F1 score for the results
precision_recall_fscore = precision_recall_fscore_support(labels.data.detach().cpu().numpy(), preds.detach().cpu().numpy(), average='weighted', zero_division=0)
f1_score = precision_recall_fscore[2]
# update statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data).cpu()
running_f1 += f1_score
# Calculate loss, accuracy and F1 score for the epoch
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
epoch_f1 = running_f1 / len(dataloaders[phase])
print('\nEpoch {} - {} - Loss: {:.4f} Acc: {:.4f} F1: {:.4f}\n'.format(epoch+1, phase, epoch_loss, epoch_acc, epoch_f1))
# Validation step
if phase == 'val':
val_acc_history.append(epoch_acc)
val_loss_history.append(epoch_loss)
val_f1_history.append(epoch_f1)
if epoch_f1 > best_f1:
print('\nF1 score {:.4f} improved from {:.4f}. Saving the model.\n'.format(epoch_f1, best_f1))
# Model with best F1 score is saved
utils.save_model(model, 224, args.save_model_format, args.save_model_path, args.model_name, args.date)
model = model.to(args.device)
best_f1 = epoch_f1
best_epoch = epoch
elif epoch - best_epoch > args.early_stop_threshold:
# terminates the training loop if validation accuracy has not improved
print("Early stopped training at epoch %d" % epoch)
# Set early stopping condition
early_stop = True
break
elif phase == 'train':
tr_acc_history.append(epoch_acc)
tr_loss_history.append(epoch_loss)
tr_f1_history.append(epoch_f1)
# Break outer loop if early stopping condition is activated
if early_stop:
break
# Take scheduler step
if scheduler:
scheduler.step(val_f1_history[-1])
time_elapsed = time.time() - since
print('\nTraining complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best validation F1 score: {:.4f}'.format(best_f1))
# Returns model with the weights from the best epoch (based on validation accuracy)
hist_dict = {'tr_acc': tr_acc_history,
'val_acc': val_acc_history,
'val_loss': val_loss_history,
'val_f1': val_f1_history,
'tr_loss': tr_loss_history,
'tr_f1': tr_f1_history,
'lr1': lr1_history,
'lr2': lr2_history}
return hist_dict
def main():
# Set random seed(s)
utils.set_seed(args.random_seed)
# Load image paths and labels
data_dict = get_datapaths()
# Initialize the model
model, input_size = initialize_model()
# Print the model architecture
#print(model_ft)
# Send the model to GPU (if available)
model = model.to(args.device)
print("\nInitializing Datasets and Dataloaders...")
dataloaders_dict = initialize_dataloaders(data_dict, input_size)
criterion = get_criterion(data_dict)
optimizer, scheduler = get_optimizer(model)
# Train and evaluate model
hist_dict = train_model(model, dataloaders_dict, criterion, optimizer, scheduler)
print('Damaged images: ', damaged_images)
utils.plot_metrics(hist_dict, args.results_folder, args.date)
if __name__ == '__main__':
main() |