MikkoLipsanen
commited on
Commit
•
93a3c63
1
Parent(s):
9377114
Update test.py
Browse files
test.py
CHANGED
@@ -21,26 +21,23 @@ print("Torchvision Version: ",torchvision.__version__)
|
|
21 |
|
22 |
parser = argparse.ArgumentParser('arguments for testing the model')
|
23 |
|
24 |
-
parser.add_argument('--ts_empty_folder', type=str, default="/
|
25 |
help='path to test data')
|
26 |
-
parser.add_argument('--ts_ok_folder', type=str, default="/
|
27 |
help='path to test data')
|
28 |
-
parser.add_argument('--results_folder', type=str, default="./results/
|
29 |
help='Folder for saving results')
|
30 |
-
parser.add_argument('--model_path', type=str, default="/
|
31 |
help='path to load model file from')
|
32 |
parser.add_argument('--batch_size', type=int, default=16,
|
33 |
help='batch_size')
|
34 |
parser.add_argument('--num_classes', type=int, default=2,
|
35 |
help='number of classes for classification')
|
36 |
-
parser.add_argument('--name', type=str, default='
|
37 |
help='name given to result files')
|
38 |
|
39 |
start = time.time()
|
40 |
|
41 |
-
# nohup python test.py > logs/aug_test_28022024.txt 2>&1 &
|
42 |
-
# echo $! > output/save_pid.txt
|
43 |
-
|
44 |
torch.manual_seed(67)
|
45 |
random.seed(67)
|
46 |
|
@@ -49,10 +46,8 @@ args = parser.parse_args()
|
|
49 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
50 |
Image.MAX_IMAGE_PIXELS = None
|
51 |
|
52 |
-
# https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html
|
53 |
-
|
54 |
-
|
55 |
def get_data():
|
|
|
56 |
empty_path = Path(args.ts_empty_folder)
|
57 |
ok_path = Path(args.ts_ok_folder)
|
58 |
|
@@ -62,11 +57,6 @@ def get_data():
|
|
62 |
empty_labels = np.zeros(len(empty_files))
|
63 |
ok_labels = np.ones(len(ok_files))
|
64 |
|
65 |
-
#ts_data_files = ts_data_files[:20]
|
66 |
-
#ts_data_labels = ts_data_labels[:20]
|
67 |
-
#ts_ok_files = ts_ok_files[:20]
|
68 |
-
#ts_ok_labels = ts_ok_labels[:20]
|
69 |
-
|
70 |
ts_files = empty_files + ok_files
|
71 |
ts_labels = np.concatenate((empty_labels, ok_labels))
|
72 |
|
@@ -77,12 +67,14 @@ def get_data():
|
|
77 |
|
78 |
|
79 |
def initialize_model():
|
|
|
80 |
model = onnxruntime.InferenceSession(args.model_path)
|
81 |
input_size = 224
|
82 |
return model, input_size
|
83 |
|
84 |
-
|
85 |
def get_precision_recall(y_true, y_pred):
|
|
|
86 |
precision_recall_fscore = precision_recall_fscore_support(y_true, y_pred, average=None)
|
87 |
|
88 |
prec_0 = precision_recall_fscore[0][0]
|
@@ -103,6 +95,7 @@ def get_precision_recall(y_true, y_pred):
|
|
103 |
|
104 |
|
105 |
def createConfusionMatrix(y_true, y_pred):
|
|
|
106 |
classes = np.array(['empty', 'ok'])
|
107 |
|
108 |
# Build confusion matrix
|
@@ -114,6 +107,7 @@ def createConfusionMatrix(y_true, y_pred):
|
|
114 |
return sn.heatmap(df_cm, annot=True).get_figure()
|
115 |
|
116 |
def save_preds(y_true, y_pred, paths):
|
|
|
117 |
# Identifies images that were not classified correctly
|
118 |
incorrect_indices = np.where(y_true != y_pred)
|
119 |
incorrectly_predicted_images = paths[incorrect_indices]
|
@@ -122,15 +116,12 @@ def save_preds(y_true, y_pred, paths):
|
|
122 |
|
123 |
print(f'{len(incorrect_preds)} incorrect predictions')
|
124 |
|
125 |
-
# Save file names and labels of incorrectly classified images
|
126 |
with open(args.results_folder + args.name + '_incorrect_preds', "w") as fp:
|
127 |
json.dump(incorrect_preds, fp)
|
128 |
|
129 |
# Initialize the model for this run
|
130 |
model, input_size = initialize_model()
|
131 |
|
132 |
-
# Print the model we just instantiated
|
133 |
-
#print(model_ft)
|
134 |
|
135 |
data_transforms = transforms.Compose([
|
136 |
transforms.Resize((input_size, input_size)),
|
@@ -141,8 +132,8 @@ print("Initializing Datasets and Dataloaders...")
|
|
141 |
|
142 |
ts_files, ts_labels = get_data()
|
143 |
|
144 |
-
# Function for getting model predictions on test data
|
145 |
def test_model(model, ts_files, ts_labels):
|
|
|
146 |
since = time.time()
|
147 |
label_preds = []
|
148 |
true_labels = []
|
@@ -175,14 +166,11 @@ ts_labels = np.array(ts_labels)
|
|
175 |
|
176 |
# Test model
|
177 |
y_pred, y_true, paths = test_model(model, ts_files, ts_labels)
|
178 |
-
#
|
179 |
save_preds(y_true, y_pred, paths)
|
180 |
-
#
|
181 |
get_precision_recall(y_true, y_pred)
|
182 |
|
183 |
-
# Save confusion matrix to Tensorboard
|
184 |
-
#cm = createConfusionMatrix(y_true, y_pred)
|
185 |
-
#writer.add_figure("Confusion matrix", cm)
|
186 |
# Create and save confusion matrix of the predictions and true labels
|
187 |
conf_matrix = ConfusionMatrixDisplay.from_predictions(y_true, y_pred, normalize='true', display_labels=np.array(['empty', 'ok']))
|
188 |
plt.savefig(args.results_folder + args.name + '_conf_matrix.jpg', bbox_inches='tight')
|
|
|
21 |
|
22 |
parser = argparse.ArgumentParser('arguments for testing the model')
|
23 |
|
24 |
+
parser.add_argument('--ts_empty_folder', type=str, default="/path/to/empty/test/data/",
|
25 |
help='path to test data')
|
26 |
+
parser.add_argument('--ts_ok_folder', type=str, default="/path/to/non-empty/test/data/",
|
27 |
help='path to test data')
|
28 |
+
parser.add_argument('--results_folder', type=str, default="./results/",
|
29 |
help='Folder for saving results')
|
30 |
+
parser.add_argument('--model_path', type=str, default="/path/to/model.onnx",
|
31 |
help='path to load model file from')
|
32 |
parser.add_argument('--batch_size', type=int, default=16,
|
33 |
help='batch_size')
|
34 |
parser.add_argument('--num_classes', type=int, default=2,
|
35 |
help='number of classes for classification')
|
36 |
+
parser.add_argument('--name', type=str, default='test',
|
37 |
help='name given to result files')
|
38 |
|
39 |
start = time.time()
|
40 |
|
|
|
|
|
|
|
41 |
torch.manual_seed(67)
|
42 |
random.seed(67)
|
43 |
|
|
|
46 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
47 |
Image.MAX_IMAGE_PIXELS = None
|
48 |
|
|
|
|
|
|
|
49 |
def get_data():
|
50 |
+
"""Combines test data paths and labels"""
|
51 |
empty_path = Path(args.ts_empty_folder)
|
52 |
ok_path = Path(args.ts_ok_folder)
|
53 |
|
|
|
57 |
empty_labels = np.zeros(len(empty_files))
|
58 |
ok_labels = np.ones(len(ok_files))
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
ts_files = empty_files + ok_files
|
61 |
ts_labels = np.concatenate((empty_labels, ok_labels))
|
62 |
|
|
|
67 |
|
68 |
|
69 |
def initialize_model():
|
70 |
+
"""Initializes .onnx model."""
|
71 |
model = onnxruntime.InferenceSession(args.model_path)
|
72 |
input_size = 224
|
73 |
return model, input_size
|
74 |
|
75 |
+
|
76 |
def get_precision_recall(y_true, y_pred):
|
77 |
+
"""Calculates precision, recall and F-score metrics."""
|
78 |
precision_recall_fscore = precision_recall_fscore_support(y_true, y_pred, average=None)
|
79 |
|
80 |
prec_0 = precision_recall_fscore[0][0]
|
|
|
95 |
|
96 |
|
97 |
def createConfusionMatrix(y_true, y_pred):
|
98 |
+
"""Creates confusion matrix based on the predicted and true labels."""
|
99 |
classes = np.array(['empty', 'ok'])
|
100 |
|
101 |
# Build confusion matrix
|
|
|
107 |
return sn.heatmap(df_cm, annot=True).get_figure()
|
108 |
|
109 |
def save_preds(y_true, y_pred, paths):
|
110 |
+
"""Saves file names and labels of incorrectly classified images."""
|
111 |
# Identifies images that were not classified correctly
|
112 |
incorrect_indices = np.where(y_true != y_pred)
|
113 |
incorrectly_predicted_images = paths[incorrect_indices]
|
|
|
116 |
|
117 |
print(f'{len(incorrect_preds)} incorrect predictions')
|
118 |
|
|
|
119 |
with open(args.results_folder + args.name + '_incorrect_preds', "w") as fp:
|
120 |
json.dump(incorrect_preds, fp)
|
121 |
|
122 |
# Initialize the model for this run
|
123 |
model, input_size = initialize_model()
|
124 |
|
|
|
|
|
125 |
|
126 |
data_transforms = transforms.Compose([
|
127 |
transforms.Resize((input_size, input_size)),
|
|
|
132 |
|
133 |
ts_files, ts_labels = get_data()
|
134 |
|
|
|
135 |
def test_model(model, ts_files, ts_labels):
|
136 |
+
"""Get model predictions on test data."""
|
137 |
since = time.time()
|
138 |
label_preds = []
|
139 |
true_labels = []
|
|
|
166 |
|
167 |
# Test model
|
168 |
y_pred, y_true, paths = test_model(model, ts_files, ts_labels)
|
169 |
+
# Save information of incorrect predictions
|
170 |
save_preds(y_true, y_pred, paths)
|
171 |
+
# Calculate and print precision, recall and F-score metrics
|
172 |
get_precision_recall(y_true, y_pred)
|
173 |
|
|
|
|
|
|
|
174 |
# Create and save confusion matrix of the predictions and true labels
|
175 |
conf_matrix = ConfusionMatrixDisplay.from_predictions(y_true, y_pred, normalize='true', display_labels=np.array(['empty', 'ok']))
|
176 |
plt.savefig(args.results_folder + args.name + '_conf_matrix.jpg', bbox_inches='tight')
|