--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-ln-afrivoice-10hr-v1 results: [] --- # w2v-bert-2.0-ln-afrivoice-10hr-v1 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3773 - Model Preparation Time: 0.0146 - Wer: 0.2579 - Cer: 0.0680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:------:| | 5.4983 | 1.0 | 31 | 2.8460 | 0.0146 | 1.0 | 1.0000 | | 2.3085 | 2.0 | 62 | 1.1224 | 0.0146 | 0.7398 | 0.2589 | | 0.8931 | 3.0 | 93 | 0.8311 | 0.0146 | 0.4138 | 0.1536 | | 0.7396 | 4.0 | 124 | 0.7901 | 0.0146 | 0.7207 | 0.2228 | | 0.6648 | 5.0 | 155 | 0.7516 | 0.0146 | 0.4619 | 0.1744 | | 0.6398 | 6.0 | 186 | 0.7282 | 0.0146 | 0.4477 | 0.1611 | | 0.586 | 7.0 | 217 | 0.8923 | 0.0146 | 0.3608 | 0.1344 | | 0.5666 | 8.0 | 248 | 0.7070 | 0.0146 | 0.4131 | 0.1518 | | 0.4841 | 9.0 | 279 | 0.7248 | 0.0146 | 0.3747 | 0.1437 | | 0.4442 | 10.0 | 310 | 0.8866 | 0.0146 | 0.3733 | 0.1370 | | 0.4325 | 11.0 | 341 | 0.6852 | 0.0146 | 0.3717 | 0.1429 | | 0.3584 | 12.0 | 372 | 0.8831 | 0.0146 | 0.3453 | 0.1300 | | 0.3397 | 13.0 | 403 | 0.9853 | 0.0146 | 0.3546 | 0.1314 | | 0.3053 | 14.0 | 434 | 0.7321 | 0.0146 | 0.3924 | 0.1509 | | 0.2655 | 15.0 | 465 | 0.8055 | 0.0146 | 0.3672 | 0.1386 | | 0.2555 | 16.0 | 496 | 0.8419 | 0.0146 | 0.3725 | 0.1405 | | 0.2239 | 17.0 | 527 | 0.8440 | 0.0146 | 0.3850 | 0.1449 | | 0.1853 | 18.0 | 558 | 0.9243 | 0.0146 | 0.3681 | 0.1397 | | 0.1554 | 19.0 | 589 | 0.9458 | 0.0146 | 0.3835 | 0.1452 | | 0.125 | 20.0 | 620 | 1.2681 | 0.0146 | 0.3506 | 0.1309 | | 0.1053 | 21.0 | 651 | 1.3723 | 0.0146 | 0.3682 | 0.1324 | | 0.0776 | 22.0 | 682 | 1.3026 | 0.0146 | 0.3781 | 0.1369 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1