File size: 15,735 Bytes
2c3b15b
 
0f41f39
 
 
 
 
 
 
 
 
2c3b15b
 
0f41f39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-lg-cv-1hr-vr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-lg-cv-1hr-vr

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4686
- Model Preparation Time: 0.0074
- Wer: 0.9247
- Cer: 0.2572

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:------:|
| 15.4113       | 1.0   | 18   | 13.3832         | 0.0074                 | 1.0    | 1.0    |
| 8.4071        | 2.0   | 36   | 5.0022          | 0.0074                 | 1.0    | 1.0    |
| 4.3781        | 3.0   | 54   | 3.8902          | 0.0074                 | 1.0    | 1.0    |
| 3.7341        | 4.0   | 72   | 3.5371          | 0.0074                 | 1.0    | 1.0    |
| 3.4503        | 5.0   | 90   | 3.3256          | 0.0074                 | 1.0    | 1.0    |
| 3.268         | 6.0   | 108  | 3.1846          | 0.0074                 | 1.0    | 1.0    |
| 3.1464        | 7.0   | 126  | 3.0891          | 0.0074                 | 1.0    | 1.0    |
| 3.0601        | 8.0   | 144  | 3.0319          | 0.0074                 | 1.0    | 1.0    |
| 3.0119        | 9.0   | 162  | 2.9856          | 0.0074                 | 1.0    | 1.0    |
| 2.9756        | 10.0  | 180  | 2.9687          | 0.0074                 | 1.0    | 1.0    |
| 2.9535        | 11.0  | 198  | 2.9495          | 0.0074                 | 1.0    | 1.0    |
| 2.9376        | 12.0  | 216  | 2.9651          | 0.0074                 | 1.0    | 1.0    |
| 2.9256        | 13.0  | 234  | 2.9529          | 0.0074                 | 1.0    | 1.0    |
| 2.9159        | 14.0  | 252  | 2.9260          | 0.0074                 | 1.0    | 1.0    |
| 2.9046        | 15.0  | 270  | 2.9180          | 0.0074                 | 1.0    | 1.0    |
| 2.8973        | 16.0  | 288  | 2.9079          | 0.0074                 | 1.0    | 1.0    |
| 2.8891        | 17.0  | 306  | 2.9027          | 0.0074                 | 1.0    | 0.9906 |
| 2.8793        | 18.0  | 324  | 2.8907          | 0.0074                 | 1.0    | 0.9882 |
| 2.8616        | 19.0  | 342  | 2.8788          | 0.0074                 | 1.0    | 0.9625 |
| 2.8416        | 20.0  | 360  | 2.8412          | 0.0074                 | 1.0    | 0.9559 |
| 2.7586        | 21.0  | 378  | 2.7118          | 0.0074                 | 1.0    | 0.8715 |
| 2.6084        | 22.0  | 396  | 2.5263          | 0.0074                 | 1.0    | 0.8093 |
| 2.4068        | 23.0  | 414  | 2.3225          | 0.0074                 | 1.0005 | 0.7330 |
| 2.1542        | 24.0  | 432  | 2.0424          | 0.0074                 | 1.0025 | 0.5160 |
| 1.8099        | 25.0  | 450  | 1.7306          | 0.0074                 | 1.0203 | 0.4231 |
| 1.464         | 26.0  | 468  | 1.4744          | 0.0074                 | 0.9682 | 0.3198 |
| 1.1766        | 27.0  | 486  | 1.3177          | 0.0074                 | 0.9476 | 0.2827 |
| 0.9688        | 28.0  | 504  | 1.2492          | 0.0074                 | 0.9482 | 0.2704 |
| 0.8301        | 29.0  | 522  | 1.2105          | 0.0074                 | 0.9837 | 0.2689 |
| 0.7473        | 30.0  | 540  | 1.1642          | 0.0074                 | 0.9340 | 0.2571 |
| 0.6502        | 31.0  | 558  | 1.1645          | 0.0074                 | 0.9358 | 0.2542 |
| 0.5898        | 32.0  | 576  | 1.1443          | 0.0074                 | 0.9389 | 0.2534 |
| 0.5306        | 33.0  | 594  | 1.1486          | 0.0074                 | 0.9363 | 0.2589 |
| 0.5048        | 34.0  | 612  | 1.1764          | 0.0074                 | 0.9586 | 0.2548 |
| 0.4661        | 35.0  | 630  | 1.1654          | 0.0074                 | 0.9414 | 0.2595 |
| 0.441         | 36.0  | 648  | 1.1358          | 0.0074                 | 0.9401 | 0.2481 |
| 0.4155        | 37.0  | 666  | 1.1788          | 0.0074                 | 0.9776 | 0.2563 |
| 0.3924        | 38.0  | 684  | 1.1449          | 0.0074                 | 0.9477 | 0.2517 |
| 0.3733        | 39.0  | 702  | 1.1898          | 0.0074                 | 0.9537 | 0.2516 |
| 0.3603        | 40.0  | 720  | 1.1532          | 0.0074                 | 0.9327 | 0.2468 |
| 0.3459        | 41.0  | 738  | 1.1934          | 0.0074                 | 0.9692 | 0.2614 |
| 0.3238        | 42.0  | 756  | 1.1646          | 0.0074                 | 0.9384 | 0.2512 |
| 0.3156        | 43.0  | 774  | 1.1860          | 0.0074                 | 0.9586 | 0.2570 |
| 0.3081        | 44.0  | 792  | 1.2123          | 0.0074                 | 0.9340 | 0.2545 |
| 0.2857        | 45.0  | 810  | 1.2501          | 0.0074                 | 0.9499 | 0.2566 |
| 0.2776        | 46.0  | 828  | 1.1802          | 0.0074                 | 0.9281 | 0.2545 |
| 0.2702        | 47.0  | 846  | 1.2074          | 0.0074                 | 0.9286 | 0.2567 |
| 0.2693        | 48.0  | 864  | 1.1991          | 0.0074                 | 0.9628 | 0.2490 |
| 0.2467        | 49.0  | 882  | 1.2253          | 0.0074                 | 0.9289 | 0.2538 |
| 0.2453        | 50.0  | 900  | 1.2126          | 0.0074                 | 0.9335 | 0.2506 |
| 0.2455        | 51.0  | 918  | 1.1971          | 0.0074                 | 0.9383 | 0.2502 |
| 0.2353        | 52.0  | 936  | 1.2120          | 0.0074                 | 0.9175 | 0.2400 |
| 0.2242        | 53.0  | 954  | 1.1997          | 0.0074                 | 0.9272 | 0.2405 |
| 0.2142        | 54.0  | 972  | 1.2027          | 0.0074                 | 0.9284 | 0.2449 |
| 0.2166        | 55.0  | 990  | 1.2304          | 0.0074                 | 0.9251 | 0.2489 |
| 0.209         | 56.0  | 1008 | 1.2486          | 0.0074                 | 0.9472 | 0.2487 |
| 0.1989        | 57.0  | 1026 | 1.2205          | 0.0074                 | 0.9301 | 0.2456 |
| 0.1988        | 58.0  | 1044 | 1.2305          | 0.0074                 | 0.9208 | 0.2428 |
| 0.1951        | 59.0  | 1062 | 1.2508          | 0.0074                 | 0.9402 | 0.2449 |
| 0.1906        | 60.0  | 1080 | 1.2638          | 0.0074                 | 0.9333 | 0.2474 |
| 0.1869        | 61.0  | 1098 | 1.2625          | 0.0074                 | 0.9249 | 0.2438 |
| 0.1812        | 62.0  | 1116 | 1.2536          | 0.0074                 | 0.9170 | 0.2473 |
| 0.1822        | 63.0  | 1134 | 1.2459          | 0.0074                 | 0.9315 | 0.2434 |
| 0.1732        | 64.0  | 1152 | 1.2313          | 0.0074                 | 0.9128 | 0.2435 |
| 0.1723        | 65.0  | 1170 | 1.2817          | 0.0074                 | 0.9130 | 0.2497 |
| 0.1748        | 66.0  | 1188 | 1.2766          | 0.0074                 | 0.9093 | 0.2388 |
| 0.1667        | 67.0  | 1206 | 1.2803          | 0.0074                 | 0.9271 | 0.2498 |
| 0.1652        | 68.0  | 1224 | 1.2886          | 0.0074                 | 0.9312 | 0.2439 |
| 0.1566        | 69.0  | 1242 | 1.2814          | 0.0074                 | 0.9104 | 0.2414 |
| 0.1512        | 70.0  | 1260 | 1.2557          | 0.0074                 | 0.9226 | 0.2432 |
| 0.1455        | 71.0  | 1278 | 1.2875          | 0.0074                 | 0.9178 | 0.2455 |
| 0.1548        | 72.0  | 1296 | 1.3325          | 0.0074                 | 0.9661 | 0.2468 |
| 0.158         | 73.0  | 1314 | 1.2506          | 0.0074                 | 0.9303 | 0.2474 |
| 0.1579        | 74.0  | 1332 | 1.2974          | 0.0074                 | 0.9341 | 0.2465 |
| 0.1492        | 75.0  | 1350 | 1.2893          | 0.0074                 | 0.9199 | 0.2490 |
| 0.1471        | 76.0  | 1368 | 1.3097          | 0.0074                 | 0.9194 | 0.2466 |
| 0.1454        | 77.0  | 1386 | 1.3065          | 0.0074                 | 0.9099 | 0.2428 |
| 0.1456        | 78.0  | 1404 | 1.2618          | 0.0074                 | 0.9074 | 0.2406 |
| 0.1515        | 79.0  | 1422 | 1.3326          | 0.0074                 | 0.9213 | 0.2503 |
| 0.1452        | 80.0  | 1440 | 1.3146          | 0.0074                 | 0.9082 | 0.2384 |
| 0.1326        | 81.0  | 1458 | 1.3145          | 0.0074                 | 0.9089 | 0.2412 |
| 0.1368        | 82.0  | 1476 | 1.2851          | 0.0074                 | 0.9039 | 0.2433 |
| 0.1314        | 83.0  | 1494 | 1.3079          | 0.0074                 | 0.9099 | 0.2410 |
| 0.1272        | 84.0  | 1512 | 1.3156          | 0.0074                 | 0.9081 | 0.2399 |
| 0.1359        | 85.0  | 1530 | 1.3318          | 0.0074                 | 0.9235 | 0.2435 |
| 0.1288        | 86.0  | 1548 | 1.3015          | 0.0074                 | 0.9057 | 0.2390 |
| 0.1243        | 87.0  | 1566 | 1.3271          | 0.0074                 | 0.9111 | 0.2405 |
| 0.1334        | 88.0  | 1584 | 1.3117          | 0.0074                 | 0.9120 | 0.2410 |
| 0.1248        | 89.0  | 1602 | 1.3005          | 0.0074                 | 0.9193 | 0.2436 |
| 0.1163        | 90.0  | 1620 | 1.3611          | 0.0074                 | 0.9195 | 0.2416 |
| 0.1233        | 91.0  | 1638 | 1.3070          | 0.0074                 | 0.9117 | 0.2416 |
| 0.1264        | 92.0  | 1656 | 1.3325          | 0.0074                 | 0.9109 | 0.2384 |
| 0.1249        | 93.0  | 1674 | 1.3528          | 0.0074                 | 0.9150 | 0.2411 |
| 0.1189        | 94.0  | 1692 | 1.3673          | 0.0074                 | 0.9134 | 0.2434 |
| 0.1197        | 95.0  | 1710 | 1.3391          | 0.0074                 | 0.9097 | 0.2449 |
| 0.1212        | 96.0  | 1728 | 1.3404          | 0.0074                 | 0.9178 | 0.2400 |
| 0.1168        | 97.0  | 1746 | 1.3651          | 0.0074                 | 0.9153 | 0.2408 |
| 0.1133        | 98.0  | 1764 | 1.3744          | 0.0074                 | 0.9236 | 0.2430 |
| 0.113         | 99.0  | 1782 | 1.3383          | 0.0074                 | 0.9000 | 0.2358 |
| 0.1244        | 100.0 | 1800 | 1.3553          | 0.0074                 | 0.9028 | 0.2356 |
| 0.1116        | 101.0 | 1818 | 1.3768          | 0.0074                 | 0.9136 | 0.2392 |
| 0.1078        | 102.0 | 1836 | 1.3629          | 0.0074                 | 0.9116 | 0.2409 |
| 0.1117        | 103.0 | 1854 | 1.3564          | 0.0074                 | 0.9276 | 0.2410 |
| 0.1063        | 104.0 | 1872 | 1.3593          | 0.0074                 | 0.9146 | 0.2395 |
| 0.1083        | 105.0 | 1890 | 1.3516          | 0.0074                 | 0.9053 | 0.2406 |
| 0.1096        | 106.0 | 1908 | 1.3819          | 0.0074                 | 0.9338 | 0.2439 |
| 0.1013        | 107.0 | 1926 | 1.3928          | 0.0074                 | 0.9266 | 0.2433 |
| 0.1123        | 108.0 | 1944 | 1.3754          | 0.0074                 | 0.9200 | 0.2422 |
| 0.1107        | 109.0 | 1962 | 1.3677          | 0.0074                 | 0.9108 | 0.2401 |
| 0.1061        | 110.0 | 1980 | 1.3938          | 0.0074                 | 0.9139 | 0.2397 |
| 0.1034        | 111.0 | 1998 | 1.3845          | 0.0074                 | 0.9349 | 0.2457 |
| 0.1042        | 112.0 | 2016 | 1.3915          | 0.0074                 | 0.9184 | 0.2426 |
| 0.1077        | 113.0 | 2034 | 1.3786          | 0.0074                 | 0.9124 | 0.2421 |
| 0.0987        | 114.0 | 2052 | 1.3875          | 0.0074                 | 0.9183 | 0.2442 |
| 0.1038        | 115.0 | 2070 | 1.3943          | 0.0074                 | 0.9266 | 0.2447 |
| 0.0981        | 116.0 | 2088 | 1.3904          | 0.0074                 | 0.9224 | 0.2438 |
| 0.0964        | 117.0 | 2106 | 1.4113          | 0.0074                 | 0.9144 | 0.2426 |
| 0.0978        | 118.0 | 2124 | 1.4044          | 0.0074                 | 0.9184 | 0.2427 |
| 0.0999        | 119.0 | 2142 | 1.3869          | 0.0074                 | 0.9257 | 0.2449 |
| 0.1005        | 120.0 | 2160 | 1.3821          | 0.0074                 | 0.9192 | 0.2440 |
| 0.1026        | 121.0 | 2178 | 1.3913          | 0.0074                 | 0.9188 | 0.2457 |
| 0.0948        | 122.0 | 2196 | 1.3892          | 0.0074                 | 0.9229 | 0.2458 |
| 0.0968        | 123.0 | 2214 | 1.4042          | 0.0074                 | 0.9192 | 0.2449 |
| 0.0897        | 124.0 | 2232 | 1.4130          | 0.0074                 | 0.9172 | 0.2448 |
| 0.1031        | 125.0 | 2250 | 1.4104          | 0.0074                 | 0.9189 | 0.2431 |
| 0.094         | 126.0 | 2268 | 1.4125          | 0.0074                 | 0.9182 | 0.2434 |
| 0.0897        | 127.0 | 2286 | 1.4098          | 0.0074                 | 0.9135 | 0.2436 |
| 0.1005        | 128.0 | 2304 | 1.4042          | 0.0074                 | 0.9157 | 0.2432 |
| 0.0923        | 129.0 | 2322 | 1.4027          | 0.0074                 | 0.9175 | 0.2429 |
| 0.0994        | 130.0 | 2340 | 1.4018          | 0.0074                 | 0.9202 | 0.2442 |
| 0.1006        | 131.0 | 2358 | 1.4007          | 0.0074                 | 0.9138 | 0.2429 |
| 0.0927        | 132.0 | 2376 | 1.4001          | 0.0074                 | 0.9160 | 0.2424 |
| 0.0907        | 133.0 | 2394 | 1.4063          | 0.0074                 | 0.9150 | 0.2416 |
| 0.0964        | 134.0 | 2412 | 1.4093          | 0.0074                 | 0.9133 | 0.2421 |
| 0.0923        | 135.0 | 2430 | 1.4123          | 0.0074                 | 0.9146 | 0.2423 |
| 0.0991        | 136.0 | 2448 | 1.4134          | 0.0074                 | 0.9147 | 0.2432 |
| 0.093         | 137.0 | 2466 | 1.4116          | 0.0074                 | 0.9133 | 0.2427 |
| 0.1007        | 138.0 | 2484 | 1.4096          | 0.0074                 | 0.9141 | 0.2427 |
| 0.0921        | 139.0 | 2502 | 1.4086          | 0.0074                 | 0.9145 | 0.2426 |
| 0.0929        | 140.0 | 2520 | 1.4094          | 0.0074                 | 0.9142 | 0.2422 |
| 0.0996        | 141.0 | 2538 | 1.4108          | 0.0074                 | 0.9162 | 0.2426 |
| 0.0925        | 142.0 | 2556 | 1.4120          | 0.0074                 | 0.9164 | 0.2425 |
| 0.0928        | 143.0 | 2574 | 1.4127          | 0.0074                 | 0.9166 | 0.2424 |
| 0.0899        | 144.0 | 2592 | 1.4129          | 0.0074                 | 0.9168 | 0.2426 |
| 0.0921        | 145.0 | 2610 | 1.4128          | 0.0074                 | 0.9161 | 0.2425 |
| 0.0942        | 146.0 | 2628 | 1.4129          | 0.0074                 | 0.9169 | 0.2426 |
| 0.0915        | 147.0 | 2646 | 1.4128          | 0.0074                 | 0.9169 | 0.2429 |
| 0.0876        | 148.0 | 2664 | 1.4127          | 0.0074                 | 0.9170 | 0.2427 |
| 0.0942        | 149.0 | 2682 | 1.4127          | 0.0074                 | 0.9172 | 0.2427 |
| 0.0864        | 150.0 | 2700 | 1.4127          | 0.0074                 | 0.9169 | 0.2427 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1