Katsumata420 commited on
Commit
89e7fd8
1 Parent(s): 16eb16b

Update README

Browse files

Update README for model card

Files changed (1) hide show
  1. README.md +219 -0
README.md CHANGED
@@ -1,3 +1,222 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - cs
5
  ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ Fine-tuned multilingual BART model for Czech Grammatical Error Correction.
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+
20
+
21
+ - **Developed by:** Satoru Katsumata
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** Czech
25
+ - **License:** MIT License
26
+ - **Finetuned from model [optional]:** Fairseq multilingual BART-large ([mbart.CC25](https://github.com/Katsumata420/generic-pretrained-GEC/tree/master/mBART-GEC/examples/mbart#pre-trained-models))
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** https://github.com/Katsumata420/generic-pretrained-GEC
33
+ - **Paper [optional]:** [Stronger Baselines for Grammatical Error Correction Using a Pretrained Encoder-Decoder Model.](https://aclanthology.org/2020.aacl-main.83/)
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+ Since this model was trained with fairseq, fairseq must be used during inference as well.
40
+ More details can be found in the [README](https://github.com/Katsumata420/generic-pretrained-GEC/blob/master/mBART-GEC/README.md).
41
+
42
+ This fine-tuned model must be used with a binary file.
43
+ The binary file can be downloaded [here](https://drive.google.com/drive/folders/1oECT9q06j9r0whKmp8cqgpzvXINFutoX?usp=share_link).
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ See this [README](https://github.com/Katsumata420/generic-pretrained-GEC/blob/master/mBART-GEC/HOW_TO_REPRODUCE.md).
84
+
85
+ ### Training Data
86
+
87
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
+
89
+ [More Information Needed]
90
+
91
+ ### Training Procedure
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ #### Preprocessing [optional]
96
+
97
+ [More Information Needed]
98
+
99
+
100
+ #### Training Hyperparameters
101
+
102
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
+
104
+ #### Speeds, Sizes, Times [optional]
105
+
106
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
+
108
+ [More Information Needed]
109
+
110
+ ## Evaluation
111
+
112
+ <!-- This section describes the evaluation protocols and provides the results. -->
113
+
114
+ ### Testing Data, Factors & Metrics
115
+
116
+ #### Testing Data
117
+
118
+ <!-- This should link to a Data Card if possible. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Factors
123
+
124
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
+
126
+ [More Information Needed]
127
+
128
+ #### Metrics
129
+
130
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
+
132
+ - m2scorer
133
+ - https://www.comp.nus.edu.sg/~nlp/conll14st.html
134
+ - metrics
135
+ - Precision
136
+ - Recall
137
+ - F0.5
138
+
139
+ ### Results
140
+
141
+ This model achieved the following results for AKCES-GEC test data.
142
+
143
+ - Precision: 75.75
144
+ - Recall: 61.41
145
+ - F0.5: 72.37
146
+
147
+ #### Summary
148
+
149
+
150
+
151
+ ## Model Examination [optional]
152
+
153
+ <!-- Relevant interpretability work for the model goes here -->
154
+
155
+ [More Information Needed]
156
+
157
+ ## Environmental Impact
158
+
159
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
160
+
161
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
162
+
163
+ - **Hardware Type:** [More Information Needed]
164
+ - **Hours used:** [More Information Needed]
165
+ - **Cloud Provider:** [More Information Needed]
166
+ - **Compute Region:** [More Information Needed]
167
+ - **Carbon Emitted:** [More Information Needed]
168
+
169
+ ## Technical Specifications [optional]
170
+
171
+ ### Model Architecture and Objective
172
+
173
+ [More Information Needed]
174
+
175
+ ### Compute Infrastructure
176
+
177
+ [More Information Needed]
178
+
179
+ #### Hardware
180
+
181
+ [More Information Needed]
182
+
183
+ #### Software
184
+
185
+ [More Information Needed]
186
+
187
+ ## Citation [optional]
188
+
189
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
190
+
191
+ **BibTeX:**
192
+
193
+ ```bib
194
+ @inproceedings{katsumata2020AACL,
195
+ title = {Stronger Baselines for Grammatical Error Correction Using a Pretrained Encoder-Decoder Model},
196
+ author = {Satoru Katsumata and Mamoru Komachi},
197
+ booktitle = {Proceedings of AACL-IJCNLP 2020}
198
+ year = {2020},
199
+ }
200
+ ```
201
+
202
+ **APA:**
203
+
204
+ [More Information Needed]
205
+
206
+ ## Glossary [optional]
207
+
208
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
209
+
210
+ [More Information Needed]
211
+
212
+ ## More Information [optional]
213
+
214
+ [More Information Needed]
215
+
216
+ ## Model Card Authors [optional]
217
+
218
+ Satoru Katsumata
219
+
220
+ ## Model Card Contact
221
+
222
+ [More Information Needed]