KeerthiPriya commited on
Commit
264f1ec
1 Parent(s): 5c83fab

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: filipealmeida/Mistral-7B-Instruct-v0.1-sharded
7
+ model-index:
8
+ - name: mistral7b-finetune-10k
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mistral7b-finetune-10k
16
+
17
+ This model is a fine-tuned version of [filipealmeida/Mistral-7B-Instruct-v0.1-sharded](https://huggingface.co/filipealmeida/Mistral-7B-Instruct-v0.1-sharded) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0138
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0002
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: cosine
44
+ - training_steps: 2500
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 1.8342 | 0.08 | 100 | 1.4509 |
52
+ | 1.3118 | 0.16 | 200 | 1.2525 |
53
+ | 1.2008 | 0.24 | 300 | 1.2086 |
54
+ | 1.1544 | 0.33 | 400 | 1.1871 |
55
+ | 1.1421 | 0.41 | 500 | 1.1651 |
56
+ | 1.1222 | 0.49 | 600 | 1.1497 |
57
+ | 1.1234 | 0.57 | 700 | 1.1232 |
58
+ | 1.0913 | 0.65 | 800 | 1.1089 |
59
+ | 1.0872 | 0.73 | 900 | 1.0906 |
60
+ | 1.0396 | 0.82 | 1000 | 1.0784 |
61
+ | 1.0634 | 0.9 | 1100 | 1.0701 |
62
+ | 1.007 | 0.98 | 1200 | 1.0616 |
63
+ | 0.9981 | 1.06 | 1300 | 1.0545 |
64
+ | 0.9518 | 1.14 | 1400 | 1.0453 |
65
+ | 0.939 | 1.22 | 1500 | 1.0386 |
66
+ | 0.9791 | 1.31 | 1600 | 1.0356 |
67
+ | 0.977 | 1.39 | 1700 | 1.0302 |
68
+ | 0.9287 | 1.47 | 1800 | 1.0233 |
69
+ | 0.9393 | 1.55 | 1900 | 1.0209 |
70
+ | 0.915 | 1.63 | 2000 | 1.0184 |
71
+ | 0.95 | 1.71 | 2100 | 1.0155 |
72
+ | 0.9542 | 1.8 | 2200 | 1.0150 |
73
+ | 0.9272 | 1.88 | 2300 | 1.0146 |
74
+ | 0.9381 | 1.96 | 2400 | 1.0142 |
75
+ | 0.9358 | 2.04 | 2500 | 1.0138 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - PEFT 0.7.1
81
+ - Transformers 4.36.0.dev0
82
+ - Pytorch 2.0.0
83
+ - Datasets 2.1.0
84
+ - Tokenizers 0.15.0