--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Fine_tune_PubMedBert results: [] --- # Fine_tune_PubMedBert This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4669 - Precision: 0.6359 - Recall: 0.7044 - F1: 0.6684 - Accuracy: 0.8802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 11 | 0.8690 | 0.3548 | 0.0401 | 0.0721 | 0.7691 | | No log | 2.0 | 22 | 0.6036 | 0.6005 | 0.4635 | 0.5232 | 0.8468 | | No log | 3.0 | 33 | 0.4788 | 0.6160 | 0.5912 | 0.6034 | 0.8678 | | No log | 4.0 | 44 | 0.4621 | 0.5331 | 0.6898 | 0.6014 | 0.8611 | | No log | 5.0 | 55 | 0.4319 | 0.5795 | 0.6916 | 0.6306 | 0.8681 | | No log | 6.0 | 66 | 0.4444 | 0.5754 | 0.7099 | 0.6356 | 0.8694 | | No log | 7.0 | 77 | 0.4472 | 0.6069 | 0.7099 | 0.6543 | 0.8756 | | No log | 8.0 | 88 | 0.4556 | 0.6227 | 0.6898 | 0.6545 | 0.8786 | | No log | 9.0 | 99 | 0.4613 | 0.6118 | 0.7190 | 0.6611 | 0.8767 | | No log | 10.0 | 110 | 0.4669 | 0.6359 | 0.7044 | 0.6684 | 0.8802 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0