File size: 13,107 Bytes
54daa54
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feab8da8c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feab8da8cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feab8da8d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feab8da8dd0>", "_build": "<function ActorCriticPolicy._build at 0x7feab8da8e60>", "forward": "<function ActorCriticPolicy.forward at 0x7feab8da8ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feab8da8f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7feab8dae050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feab8dae0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feab8dae170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feab8dae200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feab8dedc00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 65536, "_total_timesteps": 60000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651783462.4182043, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAAO1b2pgps/5Q9LvtDZIr+0uuK9wO1RuwAAAAAAAAAA8/XuvVashz+ySrC9BRvLvtR6Jr5moPO8AAAAAAAAAADapYg9j7VzP9LSzD0XPNi+Qj0jPf0VfL0AAAAAAAAAADrRMb6cwUg/411rvt3q076StAO+BdtxvQAAAAAAAAAARlAcPnTxgj+bUzs+c8+1vns9ST4uNOQ8AAAAAAAAAADwwpc+eSuiP9X37z6NQL++AQinPu3BFz4AAAAAAAAAAMBAC76gtF0/CI86vnAh3L6g0ua9HHI7PQAAAAAAAAAAAMiguymwV7owh3q6r/7/uKn61DrKUJc5AACAPwAAgD/9gZI+Zo6ZP1Iy6j5+CKG+kt+LPtJ0BD4AAAAAAAAAADNlJDypfKQ/P5MIPNIm7L4ufm88aWgpvAAAAAAAAAAAc3qmPc2wfj+xOgo+K4K2vpiDpjy8V7m9AAAAAAAAAAAmhII+QzeBP5P6uT51Xsy+ILaKPkL2uzwAAAAAAAAAABoOwL2PanK6G4ygOpIpFzao4u46HfK3uQAAgD8AAIA/4ImTvhIeiD9Yhtm+3bkYvz+sor5aShW+AAAAAAAAAACLTpy+54d2P4aI0L7Phwu/rZTevqo7/b0AAAAAAAAAADPCUr0pcD265u/RunB6gDiFaFE6wodxOQAAgD8AAIA/2kPDvVxfcjl+EY+7ZoofvQ7AVLuGDN47AAAAAAAAAAAzt2+9JLGBP6OZLb05VZW+Uqbkveb+FD0AAAAAAAAAALrxAb5SsYE/K8wdvkvyxL4YWEC+xlJQvQAAAAAAAAAAKt+CPs60jT8sULM+hIbJvq96rD5UOjA+AAAAAAAAAADarW++NluCP5Icor4JTRG/Ovqxvou1dr0AAAAAAAAAAFqkCT7cqZg/old3PrCdEb8RdwY+4eG9PQAAAAAAAAAAZto6PcM5erqSeIU685WnNbOKBrqgEpu5AACAPwAAgD8AdUI9KcOEP0CmJD1g7My+GV8HPa9imb0AAAAAAAAAAHo/iT6rIWg/7vylPu+zl74KI1s+JnANPAAAAAAAAAAAZswdvdMJcz8i0q+9EzKjvhxbebxHIry9AAAAAAAAAACaFEG9rluaujaLTjtaBtK1PEUauyNpa7oAAIA/AACAPya6u71IkYQ5ZhqcO0v34DjTXeq7F7K6ugAAgD8AAIA/JsRePpsPp7yG1xS7UnhSOaFPE747WCU6AACAPwAAgD+27Xe+7uFSP1YutL5aXuy+CKxIvrQDRr4AAAAAAAAAAPrTIj4o1Z0/0g6bPjAh6b7BCCI+ghVXPQAAAAAAAAAAy5qYvoLzlj/U8gW/VnUMvyTKrb6Wwle9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.09226666666666672, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVtQoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaFn3j4U8SUCUhpRSlIwBbJRLlowBdJRHQI0RSUeMhox1fZQoaAZoCWgPQwjgn1Ilyq5DQJSGlFKUaBVLnWgWR0CNEjUfgaWHdX2UKGgGaAloD0MIBfuvc9OSRkCUhpRSlGgVS85oFkdAjRoFTefqYHV9lChoBmgJaA9DCHE7NCxG/UtAlIaUUpRoFUveaBZHQI0c9XeWOZN1fZQoaAZoCWgPQwiJYBxcOi9aQJSGlFKUaBVN6ANoFkdAjivwT/Q0GnV9lChoBmgJaA9DCEJAvoSKW2RAlIaUUpRoFU3oA2gWR0COK/WLgn+idX2UKGgGaAloD0MI6J/gYkU3YkCUhpRSlGgVTegDaBZHQI4r+ig00nB1fZQoaAZoCWgPQwhxkBDlC3VXQJSGlFKUaBVN6ANoFkdAjiv+g13t8nV9lChoBmgJaA9DCF69ioyOcmNAlIaUUpRoFU3oA2gWR0COLALb5/LDdX2UKGgGaAloD0MIMrCO44fYYUCUhpRSlGgVTegDaBZHQI4sCOFQEZB1fZQoaAZoCWgPQwjKiAtAI85hQJSGlFKUaBVN6ANoFkdAjiwNlyzXz3V9lChoBmgJaA9DCHBDjNc8XWNAlIaUUpRoFU3oA2gWR0COLBLoOhCddX2UKGgGaAloD0MImMPuOwYlYECUhpRSlGgVTegDaBZHQI4sGMCLdep1fZQoaAZoCWgPQwjHDipxHU9jQJSGlFKUaBVN6ANoFkdAjiwexOclPnV9lChoBmgJaA9DCFBQilbuE2FAlIaUUpRoFU3oA2gWR0COLCf2bobGdX2UKGgGaAloD0MIxLKZQ1KKZkCUhpRSlGgVTegDaBZHQI4sMNtqHoJ1fZQoaAZoCWgPQwjSG+4jt8FgQJSGlFKUaBVN6ANoFkdAjiw+pn6EanV9lChoBmgJaA9DCA2LUdfa6VpAlIaUUpRoFU3oA2gWR0COLEd/axoqdX2UKGgGaAloD0MIA+yjU9fHZUCUhpRSlGgVTegDaBZHQI4sUQumJnB1fZQoaAZoCWgPQwg/qIsUylJWQJSGlFKUaBVN6ANoFkdAjixXYDklu3V9lChoBmgJaA9DCGbbaWtEvmZAlIaUUpRoFU3oA2gWR0COLFwGW2PUdX2UKGgGaAloD0MIteIbCh/OZUCUhpRSlGgVTegDaBZHQI4sYZAIIGB1fZQoaAZoCWgPQwjCwHPv4cpeQJSGlFKUaBVN6ANoFkdAjixnHFPznXV9lChoBmgJaA9DCAe3tYVnA2FAlIaUUpRoFU3oA2gWR0COLG4Ia99MdX2UKGgGaAloD0MIU5W2uEa1Y0CUhpRSlGgVTegDaBZHQI4sdJe3QUp1fZQoaAZoCWgPQwiIgEOoUiNfQJSGlFKUaBVN6ANoFkdAjix5oPCl8HV9lChoBmgJaA9DCO9054lnJ2RAlIaUUpRoFU3oA2gWR0COLH6lchTwdX2UKGgGaAloD0MIhlrTvGO5YUCUhpRSlGgVTegDaBZHQI4shZ8rqdJ1fZQoaAZoCWgPQwj3rdaJyyhdQJSGlFKUaBVN6ANoFkdAjiyMHB1s+HV9lChoBmgJaA9DCNQs0O6QoV1AlIaUUpRoFU3oA2gWR0COLJD7ZWaMdX2UKGgGaAloD0MImN2Th4UfZkCUhpRSlGgVTegDaBZHQI4sleOXE611fZQoaAZoCWgPQwjkwKvlzi9hQJSGlFKUaBVN6ANoFkdAjiyaUzKs+3V9lChoBmgJaA9DCE32z9OAxVtAlIaUUpRoFU3oA2gWR0CO6JAmiQDFdX2UKGgGaAloD0MIfXVVoBbQYUCUhpRSlGgVTegDaBZHQI7plq1w5vN1fZQoaAZoCWgPQwj1ukVgrBdQQJSGlFKUaBVLuGgWR0CO7bhXr+o+dX2UKGgGaAloD0MIAaQ2cXLdTECUhpRSlGgVS8VoFkdAju/bMX7+DXV9lChoBmgJaA9DCDG1pQ7yQ1BAlIaUUpRoFUvJaBZHQI7wpjnV5KR1fZQoaAZoCWgPQwjttgvN9YhjQJSGlFKUaBVN6ANoFkdAjvGGReTmn3V9lChoBmgJaA9DCKUyxRwELWBAlIaUUpRoFU3oA2gWR0CO9F5Sm65HdX2UKGgGaAloD0MI843onnW9PkCUhpRSlGgVS/doFkdAjvlexfOUuHV9lChoBmgJaA9DCBZod0gxfWJAlIaUUpRoFU3oA2gWR0CP4698qnWKdX2UKGgGaAloD0MIH7sLlBRVYECUhpRSlGgVTegDaBZHQI/jtQ9A5aN1fZQoaAZoCWgPQwiJ6q2BrXZdQJSGlFKUaBVN6ANoFkdAj+O48U21lXV9lChoBmgJaA9DCFBvRs3XmmJAlIaUUpRoFU3oA2gWR0CP470g8r7PdX2UKGgGaAloD0MIPEolPKFnYECUhpRSlGgVTegDaBZHQI/jwU5+6RR1fZQoaAZoCWgPQwj9hLNbS65jQJSGlFKUaBVN6ANoFkdAj+PHFPznR3V9lChoBmgJaA9DCFwdAHHXdmBAlIaUUpRoFU3oA2gWR0CP48uh9LHudX2UKGgGaAloD0MIY4BEEyj0YUCUhpRSlGgVTegDaBZHQI/j0hJRO1x1fZQoaAZoCWgPQwjqtG6D2m1LQJSGlFKUaBVN6ANoFkdAj+PXxnWat3V9lChoBmgJaA9DCDjzqzlAw2JAlIaUUpRoFU3oA2gWR0CP49yiEg4fdX2UKGgGaAloD0MIsdzSakjPW0CUhpRSlGgVTegDaBZHQI/j4W3z+WJ1fZQoaAZoCWgPQwhu93KfnOhgQJSGlFKUaBVN6ANoFkdAj+Po0hvBJ3V9lChoBmgJaA9DCMHgmjt632FAlIaUUpRoFU3oA2gWR0CP4+3++/QCdX2UKGgGaAloD0MI1SDM7V5dXUCUhpRSlGgVTegDaBZHQI/j9w5vLox1fZQoaAZoCWgPQwhHcY46OlhhQJSGlFKUaBVN6ANoFkdAj+P9b5dnkHV9lChoBmgJaA9DCDZy3ZRyemFAlIaUUpRoFU3oA2gWR0CP5ALYwqRVdX2UKGgGaAloD0MIYVRSJ6BlXkCUhpRSlGgVTegDaBZHQI/kB9oexOd1fZQoaAZoCWgPQwhTz4JQ3sxhQJSGlFKUaBVN6ANoFkdAj+QNYSxqwnV9lChoBmgJaA9DCIaQ8/6/r2FAlIaUUpRoFU3oA2gWR0CP5BPmgam5dX2UKGgGaAloD0MIOSo3UUt/XUCUhpRSlGgVTegDaBZHQI/kGGXXyy51fZQoaAZoCWgPQwhPIsK/iIVgQJSGlFKUaBVN6ANoFkdAj+Qd12aDw3V9lChoBmgJaA9DCHheKjbmPWNAlIaUUpRoFU3oA2gWR0CP5Cf4AS39dX2UKGgGaAloD0MI5PkMqDefYUCUhpRSlGgVTegDaBZHQI/kLoIOYpl1fZQoaAZoCWgPQwgXDRmPUpxgQJSGlFKUaBVN6ANoFkdAj+Q1LJ0W/XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 120, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}