PPO LunarLander
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +27 -27
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 112.00 +/- 89.09
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feab8da8c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feab8da8cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feab8da8d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feab8da8dd0>", "_build": "<function ActorCriticPolicy._build at 0x7feab8da8e60>", "forward": "<function ActorCriticPolicy.forward at 0x7feab8da8ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feab8da8f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7feab8dae050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feab8dae0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feab8dae170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feab8dae200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feab8dedc00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 65536, "_total_timesteps": 60000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651784149.5472987, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAbAcz6SU6o/rMrAPhWcz77ohYY+vi/tPQAAAAAAAAAAGhEPPvUkgT9ZZyQ+A9bPvtjkTT41FtC7AAAAAAAAAADzYWk+uG1rP4EOlz7Qs9q+07KkPrIF7D0AAAAAAAAAAA2dw71SaMa5mq50u7K/oDeoNQi84WdEOgAAgD8AAIA/c0iVPR2xiT9iIUc9ZT64vvCmAD6+EOG8AAAAAAAAAACaUTg8d45uP5XuVj3ZN6+++enzPDeEgbwAAAAAAAAAAJodFz5XcIc/liRAPiE06L7Jkog+amD8PQAAAAAAAAAAa4aZvsp8lD+TLsC+L1wIvzBpzL6a//K8AAAAAAAAAAAa7d495lCDP3OvEj4hece+Dc01PtazMzwAAAAAAAAAAPp9mD72fZk/lWPfPmU9sr47Hto+rmsUPgAAAAAAAAAAmjpgPkPXlz/e37o+zwHnvs/TXD6ZZLM8AAAAAAAAAADt+34+O1N8Pyb3dz5Tm6G+x02TPmoqtzwAAAAAAAAAACa/F77AKJE/gsp6vmbT8L4RGAi+VpeWuwAAAAAAAAAAprYXPqtpgD8d0kE+Sym9vkZLET498ps8AAAAAAAAAABmoZG9P/mPP8aNCb6yGN++eSicvcd+BbwAAAAAAAAAACZsi7306oc/BRbcvX4z+L6bh3a9q76NPQAAAAAAAAAAc72MPVDukT+jVrY9biGvvhZmiz3/VcW8AAAAAAAAAACNdba9J8xhP2I9mLwF4Ni+wbI/vuxkwDoAAAAAAAAAALr9Ir7G6l8/CtJ9vr+Gxb5rDvG9kr5EuwAAAAAAAAAAWp45Pr3zeDzhrDO8sQSQutALCD6syI27AACAPwAAgD/gOiS+V62KP5soar50Zua+b49Ivjp+6TwAAAAAAAAAADOLNb3wHZ4/wGHrvIEDB7/KrrC9xiI9PQAAAAAAAAAAgHFpPvodlT+m+Kg+R0CwvtLBiz6ANuc9AAAAAAAAAABqQoY+hkmRPwBpnT5GE+y+JmUAPwGNLz4AAAAAAAAAAINmiz6Cw54/jqTiPqKr3L5UrYk+LfJWPQAAAAAAAAAAYE0+PsKTbz/eM4s+2UiMvj4GgD6H6KE9AAAAAAAAAABjXJ8+tVOkP83tBj92Sf6+PSywPsmosz0AAAAAAAAAADN3KLwEZpI/KKIkPJF9yb41kBO9tcHBvQAAAAAAAAAAKolQvgj8kT9eEqm+vE0Jv4w4Xr4miVE8AAAAAAAAAACGtSw+xst+P6odXD45bbO+gyVXPlIw7bwAAAAAAAAAADMVBbzmTZk/ouCfOxsm5r73Fjm9Bk/LPAAAAAAAAAAAmuVYPlbqnj8Gypc+1cPEvn0vbD6iACM+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.09226666666666672, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVuwoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqODwgogcTkCUhpRSlIwBbJRLvYwBdJRHQJlH+xt52Qp1fZQoaAZoCWgPQwigqGxYU7ExQJSGlFKUaBVL92gWR0CZTeBRAKOUdX2UKGgGaAloD0MIzO80mfHBZECUhpRSlGgVTegDaBZHQJnTzpfQa751fZQoaAZoCWgPQwjP3EPCd0tiQJSGlFKUaBVN6ANoFkdAmdPRdIGyHHV9lChoBmgJaA9DCAcKvJNP+mFAlIaUUpRoFU3oA2gWR0CZ09QkX1rZdX2UKGgGaAloD0MIxJPdzGiZY0CUhpRSlGgVTegDaBZHQJnT2HwgDA91fZQoaAZoCWgPQwh7+Z0mMwheQJSGlFKUaBVN6ANoFkdAmdPb1EmY0HV9lChoBmgJaA9DCJBrQ8U49V1AlIaUUpRoFU3oA2gWR0CZ096vaDf4dX2UKGgGaAloD0MI2NZP/9khZECUhpRSlGgVTegDaBZHQJnT4ZaV2Rt1fZQoaAZoCWgPQwjD8XwG1JdfQJSGlFKUaBVN6ANoFkdAmdPkleF+NXV9lChoBmgJaA9DCNANTdnphWBAlIaUUpRoFU3oA2gWR0CZ0+evZAY6dX2UKGgGaAloD0MI4CpPIOzkFECUhpRSlGgVTegDaBZHQJnT6t3fQ8h1fZQoaAZoCWgPQwh63o0Fhc9fQJSGlFKUaBVN6ANoFkdAmdPucQRPGnV9lChoBmgJaA9DCLCsNCmFEmJAlIaUUpRoFU3oA2gWR0CZ0/I8hcJMdX2UKGgGaAloD0MIE7pL4ix7ZkCUhpRSlGgVTegDaBZHQJnT9jjJdSl1fZQoaAZoCWgPQwhgP8QGi+9kQJSGlFKUaBVN6ANoFkdAmdP6wljVhHV9lChoBmgJaA9DCOCe50+b7GJAlIaUUpRoFU3oA2gWR0CZ0/3nIQvpdX2UKGgGaAloD0MIOpD11OpVZECUhpRSlGgVTegDaBZHQJnUAMKCxu91fZQoaAZoCWgPQwhXsI14MshjQJSGlFKUaBVN6ANoFkdAmdQDjin5z3V9lChoBmgJaA9DCD0NGCR9zGFAlIaUUpRoFU3oA2gWR0CZ1AaYu01JdX2UKGgGaAloD0MIQ/8EF6uZY0CUhpRSlGgVTegDaBZHQJnUCkgwGnp1fZQoaAZoCWgPQwiy1eWUgN1gQJSGlFKUaBVN6ANoFkdAmdQNKqXF+HV9lChoBmgJaA9DCCAot+17KDtAlIaUUpRoFU3oA2gWR0CZ1BEhq0tzdX2UKGgGaAloD0MIzJpY4KtfZECUhpRSlGgVTegDaBZHQJnUFRIjGDN1fZQoaAZoCWgPQwgOLbKd791dQJSGlFKUaBVN6ANoFkdAmdQX5N47inV9lChoBmgJaA9DCAHBHD1+ZGNAlIaUUpRoFU3oA2gWR0CZ1BrqMWGidX2UKGgGaAloD0MIOGivPh69YkCUhpRSlGgVTegDaBZHQJnUHaXa8Hx1fZQoaAZoCWgPQwjIemr11VhmQJSGlFKUaBVN6ANoFkdAmdQhI4EOiHV9lChoBmgJaA9DCPS/XIsW+VpAlIaUUpRoFU3oA2gWR0CZ1CR0EHMVdX2UKGgGaAloD0MI88mK4ep+ZkCUhpRSlGgVTegDaBZHQJnUJ4/u9e11fZQoaAZoCWgPQwiGdePdkdJdQJSGlFKUaBVN6ANoFkdAmdQqgElme3V9lChoBmgJaA9DCCC1iZN7OmVAlIaUUpRoFU3oA2gWR0CZ1C1h9b5edX2UKGgGaAloD0MInlxTIDMyZ0CUhpRSlGgVTegDaBZHQJozPGYKIBR1fZQoaAZoCWgPQwiBk23gjtpkQJSGlFKUaBVN6ANoFkdAmjkmQ8wHq3V9lChoBmgJaA9DCDNRhNTtD11AlIaUUpRoFU3oA2gWR0CavEUO/cnFdX2UKGgGaAloD0MI/BnerEGhY0CUhpRSlGgVTegDaBZHQJq8R+XqqwR1fZQoaAZoCWgPQwjVlc/yPJNaQJSGlFKUaBVN6ANoFkdAmrxK5f+junV9lChoBmgJaA9DCLfxJyobvGJAlIaUUpRoFU3oA2gWR0CavE7eVLSNdX2UKGgGaAloD0MIbNCX3v5rX0CUhpRSlGgVTegDaBZHQJq8UkTpPh11fZQoaAZoCWgPQwjwUuqScdVfQJSGlFKUaBVN6ANoFkdAmrxUu14PgHV9lChoBmgJaA9DCCFcAYV67ltAlIaUUpRoFU3oA2gWR0CavFgJ1JUYdX2UKGgGaAloD0MI/BwfLU4ZZECUhpRSlGgVTegDaBZHQJq8Wneizs11fZQoaAZoCWgPQwgi/8wgvgVkQJSGlFKUaBVN6ANoFkdAmrxdAs052nV9lChoBmgJaA9DCAFQxY1b+l5AlIaUUpRoFU3oA2gWR0CavF/uLJjldX2UKGgGaAloD0MI28GIfQJfYECUhpRSlGgVTegDaBZHQJq8YiwB5op1fZQoaAZoCWgPQwgwvJLkuf1dQJSGlFKUaBVN6ANoFkdAmrxkh/y5JHV9lChoBmgJaA9DCGfSpuoeqGRAlIaUUpRoFU3oA2gWR0CavGcJ+lTFdX2UKGgGaAloD0MIprkVwmp/YUCUhpRSlGgVTegDaBZHQJq8acurZJ11fZQoaAZoCWgPQwhcABqlS5JmQJSGlFKUaBVN6ANoFkdAmrxsrRSgoXV9lChoBmgJaA9DCKiN6nSgr2NAlIaUUpRoFU3oA2gWR0CavG+H8CPqdX2UKGgGaAloD0MILPTBMjYCYkCUhpRSlGgVTegDaBZHQJq8c2sJY1Z1fZQoaAZoCWgPQwgzxLEubkBgQJSGlFKUaBVN6ANoFkdAmrx2EsasIXV9lChoBmgJaA9DCJQyqaENymRAlIaUUpRoFU3oA2gWR0CavHlXRw6ydX2UKGgGaAloD0MIHCeFeQ+2YUCUhpRSlGgVTegDaBZHQJq8fBSDRMN1fZQoaAZoCWgPQwhC6KBLOHhmQJSGlFKUaBVN6ANoFkdAmrx+6unuRnV9lChoBmgJaA9DCHOiXYWUj2FAlIaUUpRoFU3oA2gWR0CavIF2V3UydX2UKGgGaAloD0MIIchBCbMdZECUhpRSlGgVTegDaBZHQJq8g98qnWJ1fZQoaAZoCWgPQwjIYTB/hctfQJSGlFKUaBVN6ANoFkdAmryG0mdAgXV9lChoBmgJaA9DCD24O2u3OGFAlIaUUpRoFU3oA2gWR0CavImWdEsrdX2UKGgGaAloD0MIzoqoiT7LXUCUhpRSlGgVTegDaBZHQJq8jAKv3al1fZQoaAZoCWgPQwgpr5XQXRphQJSGlFKUaBVN6ANoFkdAmryO10DEFXV9lChoBmgJaA9DCO23dqKku2JAlIaUUpRoFU3oA2gWR0CavJJ8OTaCdX2UKGgGaAloD0MIfLQ4Y5jeYkCUhpRSlGgVTegDaBZHQJq8lqL0jC51fZQoaAZoCWgPQwhQxCKGnYViQJSGlFKUaBVN6ANoFkdAmryaVt4zJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 132, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7adc427d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7adc427dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7adc427e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7adc427ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f7adc427f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7adc3ac050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7adc3ac0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7adc3ac170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7adc3ac200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7adc3ac290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7adc3ac320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7adc467ed0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1651945029.5165648, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpgIj5xbyK7OwBLuo/6KTfY8jG8/toeOAAAgD8AAIA/M0nuPK6NlbpohdW87p1aPNebxTl6jEC9AACAPwAAgD+tcky+l1M1P+WXT72J5mq+0CB1vHpJ6jwAAAAAAAAAAGpxhL6Ibyc/Nh3wvJfifb7m91G8QO3sOwAAAAAAAAAAWkj4Pcp+Xj9a+pY7DG/AvvaUcT16ki69AAAAAAAAAAAmJiM+PD7oPq02/L2s66G+ih0YvNMp1zwAAAAAAAAAAN23d74UO687wh+du3kaGbzS5Tu9i64RPQAAgD8AAIA/TRE4vY4nnz8TyA2+FsikvnDnxbzYicw8AAAAAAAAAABNyqU9j0pHujrLvLuZt8c2snRvO1AbNbYAAIA/AACAP/CBWb6f5Zs8CwvIOz+nNLpyUSy+hafkuQAAgD8AAIA/85OzvexRzrmyk3M779dONtvbKDuKdIy6AACAPwAAgD8zwIs8rqWtulenjzuN0ic26ue9umqWpLoAAIA/AACAPzr8Nj4UNKE7A9mOvDqFFzyzeks+Vsg+vQAAgD8AAIA/YOFNvns27Dtyo8i61UqQOCOmcL330Ti5AACAPwAAgD8AFNm8w1EIumTuP7wVNoK144l6uo1B6jQAAIA/AACAP2Y29Lx8lWQ/WdHEvWEusL6/1WQ9J8EAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINNWT+UfUXUCUhpRSlIwBbJRN6AOMAXSUR0CHkq/eLvTgdX2UKGgGaAloD0MImrSpukdeXkCUhpRSlGgVTegDaBZHQIee/GMn7YV1fZQoaAZoCWgPQwhD5zV2icJdQJSGlFKUaBVN6ANoFkdAh6fpTMqz7nV9lChoBmgJaA9DCOSCM/j7AltAlIaUUpRoFU3oA2gWR0CHrAEzwc5sdX2UKGgGaAloD0MICvSJPElrXECUhpRSlGgVTegDaBZHQIeyI6r/82t1fZQoaAZoCWgPQwiWQ4ts57NBwJSGlFKUaBVL8GgWR0CHtP4wh4dIdX2UKGgGaAloD0MIRDLk2PrNZECUhpRSlGgVTegDaBZHQIe5xZ4fOlh1fZQoaAZoCWgPQwjYnINnQgtbQJSGlFKUaBVN6ANoFkdAh76zZ6D5CXV9lChoBmgJaA9DCLdif9k91TPAlIaUUpRoFU0iAWgWR0CHx9hZQpF1dX2UKGgGaAloD0MIwK4mT1mpYUCUhpRSlGgVTegDaBZHQIfOts54nnd1fZQoaAZoCWgPQwinlNdK6BpcQJSGlFKUaBVN6ANoFkdAh9R2y9mHxnV9lChoBmgJaA9DCAlwehfvR+U/lIaUUpRoFUvjaBZHQIfWsaXKKYR1fZQoaAZoCWgPQwgZyR6hZlZBwJSGlFKUaBVNHQFoFkdAh+Fa4lQdj3V9lChoBmgJaA9DCK3e4XZo+BZAlIaUUpRoFU3oA2gWR0CH5MRVZLZjdX2UKGgGaAloD0MIG0ZB8PhqOECUhpRSlGgVTSgBaBZHQIfriAjIJZ51fZQoaAZoCWgPQwhFup9TECBgQJSGlFKUaBVN6ANoFkdAh/uDu8brC3V9lChoBmgJaA9DCC5VaYtr5k5AlIaUUpRoFU3oA2gWR0CIAFYYBNmEdX2UKGgGaAloD0MIixh2GJMgQkCUhpRSlGgVTegDaBZHQIgLr1uivgZ1fZQoaAZoCWgPQwgR34lZLwVdQJSGlFKUaBVN6ANoFkdAiBDwlByCF3V9lChoBmgJaA9DCAsJGF3e/FhAlIaUUpRoFU3oA2gWR0CIEgOYIBzWdX2UKGgGaAloD0MIxcpo5PNqHsCUhpRSlGgVTTABaBZHQIgSlcOby6N1fZQoaAZoCWgPQwgSL0/niopZwJSGlFKUaBVNegFoFkdAiCP2cawUxnV9lChoBmgJaA9DCGJKJNHLu1dAlIaUUpRoFU3oA2gWR0CIuhNqQA+7dX2UKGgGaAloD0MIBfwaSYI4IkCUhpRSlGgVTTABaBZHQIi/aK3uuzR1fZQoaAZoCWgPQwjRzJNrCldUQJSGlFKUaBVN6ANoFkdAiMLwjdHlO3V9lChoBmgJaA9DCJynOuRmAGJAlIaUUpRoFU3oA2gWR0CIxtfJmukldX2UKGgGaAloD0MIUI4CRMHXYECUhpRSlGgVTegDaBZHQIjU6Y9gWrR1fZQoaAZoCWgPQwjoFORnIyhhQJSGlFKUaBVN6ANoFkdAiOWmYKIBR3V9lChoBmgJaA9DCFGgT+RJGmJAlIaUUpRoFU3oA2gWR0CI7e7tiQT3dX2UKGgGaAloD0MIbt+j/nrdX0CUhpRSlGgVTegDaBZHQIj1ClUIcBF1fZQoaAZoCWgPQwi2K/TBMuFbQJSGlFKUaBVN6ANoFkdAiPfzVlPJrHV9lChoBmgJaA9DCHMTtTQ3z2BAlIaUUpRoFU3oA2gWR0CJBRJFspG4dX2UKGgGaAloD0MIPtAKDFnxQsCUhpRSlGgVS9BoFkdAiR8+3Ytg8nV9lChoBmgJaA9DCKhxb37D5ArAlIaUUpRoFU0OAWgWR0CJIOaTfR/mdX2UKGgGaAloD0MICanb2de4Y0CUhpRSlGgVTegDaBZHQIknXUYsNDt1fZQoaAZoCWgPQwixwFd06yNYQJSGlFKUaBVN6ANoFkdAiS2jtw71ZnV9lChoBmgJaA9DCOc0C7S7SGRAlIaUUpRoFU3oA2gWR0CJPFqXWvr4dX2UKGgGaAloD0MIpWlQNA8xYECUhpRSlGgVTegDaBZHQIlDAGKQ7tB1fZQoaAZoCWgPQwiPG3433cNfQJSGlFKUaBVN6ANoFkdAiUTwQtjCpHV9lChoBmgJaA9DCNXMWgpIe2BAlIaUUpRoFU3oA2gWR0CJWgEBbOeKdX2UKGgGaAloD0MIF9nO91OjBsCUhpRSlGgVTTkBaBZHQIlhN4X40uV1fZQoaAZoCWgPQwhdTgmISVBJQJSGlFKUaBVN6ANoFkdAie9uEmICVHV9lChoBmgJaA9DCM/AyMuajlRAlIaUUpRoFU3oA2gWR0CJ9D1YhdMTdX2UKGgGaAloD0MICVT/IJIGW0CUhpRSlGgVTegDaBZHQIn3ak0rK/51fZQoaAZoCWgPQwiuYYbGk1xhQJSGlFKUaBVN6ANoFkdAifqtQTEiuHV9lChoBmgJaA9DCPWc9L7xGTdAlIaUUpRoFU0UAWgWR0CKA4YIBzV+dX2UKGgGaAloD0MIF6BtNeuWVUCUhpRSlGgVTegDaBZHQIoGqOearm11fZQoaAZoCWgPQwgR4PQu3hZhQJSGlFKUaBVN6ANoFkdAihRNCiRGMHV9lChoBmgJaA9DCD18mShCVFtAlIaUUpRoFU3oA2gWR0CKIREKmbb2dX2UKGgGaAloD0MIm+PcJtw7HECUhpRSlGgVS/9oFkdAiiwgyuZCwHV9lChoBmgJaA9DCHCZ02Wx+GFAlIaUUpRoFU3oA2gWR0CKL9OtW+49dX2UKGgGaAloD0MIMGMK1jg/WMCUhpRSlGgVTdMBaBZHQIpF42wV0tB1fZQoaAZoCWgPQwi9NEWA0yFZQJSGlFKUaBVN6ANoFkdAikYykbgjyHV9lChoBmgJaA9DCIfD0sCPW2BAlIaUUpRoFU3oA2gWR0CKR5MK1G9YdX2UKGgGaAloD0MITTJyFvZeVUCUhpRSlGgVTegDaBZHQIpSA6r/82t1fZQoaAZoCWgPQwgVONkG7sA6wJSGlFKUaBVNPQFoFkdAilV7HIZIhHV9lChoBmgJaA9DCGXequtQj1dAlIaUUpRoFU3oA2gWR0CKXfDxb0OFdX2UKGgGaAloD0MILekoB7MKUUCUhpRSlGgVTegDaBZHQIpjUOG0u151fZQoaAZoCWgPQwhafuAqT2JEQJSGlFKUaBVN6ANoFkdAimTtdiUgS3V9lChoBmgJaA9DCPMC7KNTiz9AlIaUUpRoFU0QAWgWR0CKcAtsenyedX2UKGgGaAloD0MIBFQ4glSxVECUhpRSlGgVTegDaBZHQIp8euA7Ppp1fZQoaAZoCWgPQwhzSdV2E49XQJSGlFKUaBVN6ANoFkdAiwe8SXdCV3V9lChoBmgJaA9DCMUe2scKW2BAlIaUUpRoFU3oA2gWR0CLC+WIoE0SdX2UKGgGaAloD0MImzqPiv9jWkCUhpRSlGgVTegDaBZHQIsOkMEzO5d1fZQoaAZoCWgPQwhdixag7fNgQJSGlFKUaBVN6ANoFkdAix0bvG6wuHV9lChoBmgJaA9DCNnr3R/vK2FAlIaUUpRoFU3oA2gWR0CLKjNEgGKRdX2UKGgGaAloD0MI6zao/dbuAUCUhpRSlGgVTQ0BaBZHQIs01uHerMl1fZQoaAZoCWgPQwh1yqMb4WtjQJSGlFKUaBVN6ANoFkdAi0LTVDrquHV9lChoBmgJaA9DCIMUPIVcoGJAlIaUUpRoFU3oA2gWR0CLRs+V1Oj7dX2UKGgGaAloD0MIzSIUW0FWXkCUhpRSlGgVTegDaBZHQItfZA0Kqn51fZQoaAZoCWgPQwigNqrTgX5YQJSGlFKUaBVN6ANoFkdAi2Dig9Net3V9lChoBmgJaA9DCHUfgNQm6l9AlIaUUpRoFU3oA2gWR0CLbMw0waisdX2UKGgGaAloD0MIzjXM0HhkX0CUhpRSlGgVTegDaBZHQItw5VCHARF1fZQoaAZoCWgPQwiG/3QDBbYgwJSGlFKUaBVNEwFoFkdAi3lVeruIAXV9lChoBmgJaA9DCOWAXU2eDlhAlIaUUpRoFU3oA2gWR0CLejUBGQS0dX2UKGgGaAloD0MIAaYMHNBTV0CUhpRSlGgVTegDaBZHQIt/+irT6SF1fZQoaAZoCWgPQwjYKyy4H+heQJSGlFKUaBVN6ANoFkdAi4GwgLZzxXV9lChoBmgJaA9DCAUabOq8d2FAlIaUUpRoFU3oA2gWR0CLjVor4FibdX2UKGgGaAloD0MIVft0PGY4JUCUhpRSlGgVTRsBaBZHQIuQaj+Jgst1fZQoaAZoCWgPQwg6eZEJ+LUrwJSGlFKUaBVNNAFoFkdAi5LJe/pMYnV9lChoBmgJaA9DCOFgb2LIK2BAlIaUUpRoFU3oA2gWR0CLmSIj4YaYdX2UKGgGaAloD0MICtejcD2UUMCUhpRSlGgVTQsBaBZHQIuh/84xUNt1fZQoaAZoCWgPQwgd5zbh3hpjQJSGlFKUaBVN6ANoFkdAjCSJdKNADHV9lChoBmgJaA9DCCI0go3r3VxAlIaUUpRoFU3oA2gWR0CMKylfqoqDdX2UKGgGaAloD0MIdA0zNJ54LUCUhpRSlGgVTR8BaBZHQIwydNL127p1fZQoaAZoCWgPQwhz2lNyTuNRQJSGlFKUaBVN6ANoFkdAjDqEhaC+UXV9lChoBmgJaA9DCAGkNnFy+1BAlIaUUpRoFU3oA2gWR0CMSNLK3d9EdX2UKGgGaAloD0MIPQ/uztopY0CUhpRSlGgVTR0CaBZHQIxPJQ1rIo51fZQoaAZoCWgPQwhI+N7foKBiQJSGlFKUaBVN6ANoFkdAjFPplz2ex3V9lChoBmgJaA9DCN3sD5TbGktAlIaUUpRoFU3oA2gWR0CMYXbC79Q5dX2UKGgGaAloD0MIs+xJYHOZU0CUhpRSlGgVTegDaBZHQIyONSKm8/V1fZQoaAZoCWgPQwi+h0uOOyFiQJSGlFKUaBVN6ANoFkdAjJLPbfxc3XV9lChoBmgJaA9DCPje36A9SGJAlIaUUpRoFU3oA2gWR0CMnD9ycTakdX2UKGgGaAloD0MIN8KiIk4+XECUhpRSlGgVTegDaBZHQIyjui35N491fZQoaAZoCWgPQwhBRGraRaRgQJSGlFKUaBVN6ANoFkdAjLdNBv73wnV9lChoBmgJaA9DCCcxCKwcc1RAlIaUUpRoFU3oA2gWR0CMuhhJAdGRdX2UKGgGaAloD0MI8bioFhElAECUhpRSlGgVTRABaBZHQIy/tqgyuZF1fZQoaAZoCWgPQwhgrkUL0HdTQJSGlFKUaBVN6ANoFkdAjMEbQ1JlKHV9lChoBmgJaA9DCFeYvtcQFDfAlIaUUpRoFU0FAWgWR0CMwXWYF7ladX2UKGgGaAloD0MIYd7jTBOjWUCUhpRSlGgVTegDaBZHQIzJ3l6qsEJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6c0fed7eb8e18ac02df9e3d0057172ed8d662c698d3c0f5f39106108615326f
|
3 |
+
size 147704
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -35,47 +35,47 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
-
"_np_random":
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
-
"seed":
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -83,7 +83,7 @@
|
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7adc427d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7adc427dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7adc427e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7adc427ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7adc427f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7adc3ac050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7adc3ac0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7adc3ac170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7adc3ac200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7adc3ac290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7adc3ac320>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7adc467ed0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 42,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651945029.5165648,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpgIj5xbyK7OwBLuo/6KTfY8jG8/toeOAAAgD8AAIA/M0nuPK6NlbpohdW87p1aPNebxTl6jEC9AACAPwAAgD+tcky+l1M1P+WXT72J5mq+0CB1vHpJ6jwAAAAAAAAAAGpxhL6Ibyc/Nh3wvJfifb7m91G8QO3sOwAAAAAAAAAAWkj4Pcp+Xj9a+pY7DG/AvvaUcT16ki69AAAAAAAAAAAmJiM+PD7oPq02/L2s66G+ih0YvNMp1zwAAAAAAAAAAN23d74UO687wh+du3kaGbzS5Tu9i64RPQAAgD8AAIA/TRE4vY4nnz8TyA2+FsikvnDnxbzYicw8AAAAAAAAAABNyqU9j0pHujrLvLuZt8c2snRvO1AbNbYAAIA/AACAP/CBWb6f5Zs8CwvIOz+nNLpyUSy+hafkuQAAgD8AAIA/85OzvexRzrmyk3M779dONtvbKDuKdIy6AACAPwAAgD8zwIs8rqWtulenjzuN0ic26ue9umqWpLoAAIA/AACAPzr8Nj4UNKE7A9mOvDqFFzyzeks+Vsg+vQAAgD8AAIA/YOFNvns27Dtyo8i61UqQOCOmcL330Ti5AACAPwAAgD8AFNm8w1EIumTuP7wVNoK144l6uo1B6jQAAIA/AACAP2Y29Lx8lWQ/WdHEvWEusL6/1WQ9J8EAPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINNWT+UfUXUCUhpRSlIwBbJRN6AOMAXSUR0CHkq/eLvTgdX2UKGgGaAloD0MImrSpukdeXkCUhpRSlGgVTegDaBZHQIee/GMn7YV1fZQoaAZoCWgPQwhD5zV2icJdQJSGlFKUaBVN6ANoFkdAh6fpTMqz7nV9lChoBmgJaA9DCOSCM/j7AltAlIaUUpRoFU3oA2gWR0CHrAEzwc5sdX2UKGgGaAloD0MICvSJPElrXECUhpRSlGgVTegDaBZHQIeyI6r/82t1fZQoaAZoCWgPQwiWQ4ts57NBwJSGlFKUaBVL8GgWR0CHtP4wh4dIdX2UKGgGaAloD0MIRDLk2PrNZECUhpRSlGgVTegDaBZHQIe5xZ4fOlh1fZQoaAZoCWgPQwjYnINnQgtbQJSGlFKUaBVN6ANoFkdAh76zZ6D5CXV9lChoBmgJaA9DCLdif9k91TPAlIaUUpRoFU0iAWgWR0CHx9hZQpF1dX2UKGgGaAloD0MIwK4mT1mpYUCUhpRSlGgVTegDaBZHQIfOts54nnd1fZQoaAZoCWgPQwinlNdK6BpcQJSGlFKUaBVN6ANoFkdAh9R2y9mHxnV9lChoBmgJaA9DCAlwehfvR+U/lIaUUpRoFUvjaBZHQIfWsaXKKYR1fZQoaAZoCWgPQwgZyR6hZlZBwJSGlFKUaBVNHQFoFkdAh+Fa4lQdj3V9lChoBmgJaA9DCK3e4XZo+BZAlIaUUpRoFU3oA2gWR0CH5MRVZLZjdX2UKGgGaAloD0MIG0ZB8PhqOECUhpRSlGgVTSgBaBZHQIfriAjIJZ51fZQoaAZoCWgPQwhFup9TECBgQJSGlFKUaBVN6ANoFkdAh/uDu8brC3V9lChoBmgJaA9DCC5VaYtr5k5AlIaUUpRoFU3oA2gWR0CIAFYYBNmEdX2UKGgGaAloD0MIixh2GJMgQkCUhpRSlGgVTegDaBZHQIgLr1uivgZ1fZQoaAZoCWgPQwgR34lZLwVdQJSGlFKUaBVN6ANoFkdAiBDwlByCF3V9lChoBmgJaA9DCAsJGF3e/FhAlIaUUpRoFU3oA2gWR0CIEgOYIBzWdX2UKGgGaAloD0MIxcpo5PNqHsCUhpRSlGgVTTABaBZHQIgSlcOby6N1fZQoaAZoCWgPQwgSL0/niopZwJSGlFKUaBVNegFoFkdAiCP2cawUxnV9lChoBmgJaA9DCGJKJNHLu1dAlIaUUpRoFU3oA2gWR0CIuhNqQA+7dX2UKGgGaAloD0MIBfwaSYI4IkCUhpRSlGgVTTABaBZHQIi/aK3uuzR1fZQoaAZoCWgPQwjRzJNrCldUQJSGlFKUaBVN6ANoFkdAiMLwjdHlO3V9lChoBmgJaA9DCJynOuRmAGJAlIaUUpRoFU3oA2gWR0CIxtfJmukldX2UKGgGaAloD0MIUI4CRMHXYECUhpRSlGgVTegDaBZHQIjU6Y9gWrR1fZQoaAZoCWgPQwjoFORnIyhhQJSGlFKUaBVN6ANoFkdAiOWmYKIBR3V9lChoBmgJaA9DCFGgT+RJGmJAlIaUUpRoFU3oA2gWR0CI7e7tiQT3dX2UKGgGaAloD0MIbt+j/nrdX0CUhpRSlGgVTegDaBZHQIj1ClUIcBF1fZQoaAZoCWgPQwi2K/TBMuFbQJSGlFKUaBVN6ANoFkdAiPfzVlPJrHV9lChoBmgJaA9DCHMTtTQ3z2BAlIaUUpRoFU3oA2gWR0CJBRJFspG4dX2UKGgGaAloD0MIPtAKDFnxQsCUhpRSlGgVS9BoFkdAiR8+3Ytg8nV9lChoBmgJaA9DCKhxb37D5ArAlIaUUpRoFU0OAWgWR0CJIOaTfR/mdX2UKGgGaAloD0MICanb2de4Y0CUhpRSlGgVTegDaBZHQIknXUYsNDt1fZQoaAZoCWgPQwixwFd06yNYQJSGlFKUaBVN6ANoFkdAiS2jtw71ZnV9lChoBmgJaA9DCOc0C7S7SGRAlIaUUpRoFU3oA2gWR0CJPFqXWvr4dX2UKGgGaAloD0MIpWlQNA8xYECUhpRSlGgVTegDaBZHQIlDAGKQ7tB1fZQoaAZoCWgPQwiPG3433cNfQJSGlFKUaBVN6ANoFkdAiUTwQtjCpHV9lChoBmgJaA9DCNXMWgpIe2BAlIaUUpRoFU3oA2gWR0CJWgEBbOeKdX2UKGgGaAloD0MIF9nO91OjBsCUhpRSlGgVTTkBaBZHQIlhN4X40uV1fZQoaAZoCWgPQwhdTgmISVBJQJSGlFKUaBVN6ANoFkdAie9uEmICVHV9lChoBmgJaA9DCM/AyMuajlRAlIaUUpRoFU3oA2gWR0CJ9D1YhdMTdX2UKGgGaAloD0MICVT/IJIGW0CUhpRSlGgVTegDaBZHQIn3ak0rK/51fZQoaAZoCWgPQwiuYYbGk1xhQJSGlFKUaBVN6ANoFkdAifqtQTEiuHV9lChoBmgJaA9DCPWc9L7xGTdAlIaUUpRoFU0UAWgWR0CKA4YIBzV+dX2UKGgGaAloD0MIF6BtNeuWVUCUhpRSlGgVTegDaBZHQIoGqOearm11fZQoaAZoCWgPQwgR4PQu3hZhQJSGlFKUaBVN6ANoFkdAihRNCiRGMHV9lChoBmgJaA9DCD18mShCVFtAlIaUUpRoFU3oA2gWR0CKIREKmbb2dX2UKGgGaAloD0MIm+PcJtw7HECUhpRSlGgVS/9oFkdAiiwgyuZCwHV9lChoBmgJaA9DCHCZ02Wx+GFAlIaUUpRoFU3oA2gWR0CKL9OtW+49dX2UKGgGaAloD0MIMGMK1jg/WMCUhpRSlGgVTdMBaBZHQIpF42wV0tB1fZQoaAZoCWgPQwi9NEWA0yFZQJSGlFKUaBVN6ANoFkdAikYykbgjyHV9lChoBmgJaA9DCIfD0sCPW2BAlIaUUpRoFU3oA2gWR0CKR5MK1G9YdX2UKGgGaAloD0MITTJyFvZeVUCUhpRSlGgVTegDaBZHQIpSA6r/82t1fZQoaAZoCWgPQwgVONkG7sA6wJSGlFKUaBVNPQFoFkdAilV7HIZIhHV9lChoBmgJaA9DCGXequtQj1dAlIaUUpRoFU3oA2gWR0CKXfDxb0OFdX2UKGgGaAloD0MILekoB7MKUUCUhpRSlGgVTegDaBZHQIpjUOG0u151fZQoaAZoCWgPQwhafuAqT2JEQJSGlFKUaBVN6ANoFkdAimTtdiUgS3V9lChoBmgJaA9DCPMC7KNTiz9AlIaUUpRoFU0QAWgWR0CKcAtsenyedX2UKGgGaAloD0MIBFQ4glSxVECUhpRSlGgVTegDaBZHQIp8euA7Ppp1fZQoaAZoCWgPQwhzSdV2E49XQJSGlFKUaBVN6ANoFkdAiwe8SXdCV3V9lChoBmgJaA9DCMUe2scKW2BAlIaUUpRoFU3oA2gWR0CLC+WIoE0SdX2UKGgGaAloD0MImzqPiv9jWkCUhpRSlGgVTegDaBZHQIsOkMEzO5d1fZQoaAZoCWgPQwhdixag7fNgQJSGlFKUaBVN6ANoFkdAix0bvG6wuHV9lChoBmgJaA9DCNnr3R/vK2FAlIaUUpRoFU3oA2gWR0CLKjNEgGKRdX2UKGgGaAloD0MI6zao/dbuAUCUhpRSlGgVTQ0BaBZHQIs01uHerMl1fZQoaAZoCWgPQwh1yqMb4WtjQJSGlFKUaBVN6ANoFkdAi0LTVDrquHV9lChoBmgJaA9DCIMUPIVcoGJAlIaUUpRoFU3oA2gWR0CLRs+V1Oj7dX2UKGgGaAloD0MIzSIUW0FWXkCUhpRSlGgVTegDaBZHQItfZA0Kqn51fZQoaAZoCWgPQwigNqrTgX5YQJSGlFKUaBVN6ANoFkdAi2Dig9Net3V9lChoBmgJaA9DCHUfgNQm6l9AlIaUUpRoFU3oA2gWR0CLbMw0waisdX2UKGgGaAloD0MIzjXM0HhkX0CUhpRSlGgVTegDaBZHQItw5VCHARF1fZQoaAZoCWgPQwiG/3QDBbYgwJSGlFKUaBVNEwFoFkdAi3lVeruIAXV9lChoBmgJaA9DCOWAXU2eDlhAlIaUUpRoFU3oA2gWR0CLejUBGQS0dX2UKGgGaAloD0MIAaYMHNBTV0CUhpRSlGgVTegDaBZHQIt/+irT6SF1fZQoaAZoCWgPQwjYKyy4H+heQJSGlFKUaBVN6ANoFkdAi4GwgLZzxXV9lChoBmgJaA9DCAUabOq8d2FAlIaUUpRoFU3oA2gWR0CLjVor4FibdX2UKGgGaAloD0MIVft0PGY4JUCUhpRSlGgVTRsBaBZHQIuQaj+Jgst1fZQoaAZoCWgPQwg6eZEJ+LUrwJSGlFKUaBVNNAFoFkdAi5LJe/pMYnV9lChoBmgJaA9DCOFgb2LIK2BAlIaUUpRoFU3oA2gWR0CLmSIj4YaYdX2UKGgGaAloD0MICtejcD2UUMCUhpRSlGgVTQsBaBZHQIuh/84xUNt1fZQoaAZoCWgPQwgd5zbh3hpjQJSGlFKUaBVN6ANoFkdAjCSJdKNADHV9lChoBmgJaA9DCCI0go3r3VxAlIaUUpRoFU3oA2gWR0CMKylfqoqDdX2UKGgGaAloD0MIdA0zNJ54LUCUhpRSlGgVTR8BaBZHQIwydNL127p1fZQoaAZoCWgPQwhz2lNyTuNRQJSGlFKUaBVN6ANoFkdAjDqEhaC+UXV9lChoBmgJaA9DCAGkNnFy+1BAlIaUUpRoFU3oA2gWR0CMSNLK3d9EdX2UKGgGaAloD0MIPQ/uztopY0CUhpRSlGgVTR0CaBZHQIxPJQ1rIo51fZQoaAZoCWgPQwhI+N7foKBiQJSGlFKUaBVN6ANoFkdAjFPplz2ex3V9lChoBmgJaA9DCN3sD5TbGktAlIaUUpRoFU3oA2gWR0CMYXbC79Q5dX2UKGgGaAloD0MIs+xJYHOZU0CUhpRSlGgVTegDaBZHQIyONSKm8/V1fZQoaAZoCWgPQwi+h0uOOyFiQJSGlFKUaBVN6ANoFkdAjJLPbfxc3XV9lChoBmgJaA9DCPje36A9SGJAlIaUUpRoFU3oA2gWR0CMnD9ycTakdX2UKGgGaAloD0MIN8KiIk4+XECUhpRSlGgVTegDaBZHQIyjui35N491fZQoaAZoCWgPQwhBRGraRaRgQJSGlFKUaBVN6ANoFkdAjLdNBv73wnV9lChoBmgJaA9DCCcxCKwcc1RAlIaUUpRoFU3oA2gWR0CMuhhJAdGRdX2UKGgGaAloD0MI8bioFhElAECUhpRSlGgVTRABaBZHQIy/tqgyuZF1fZQoaAZoCWgPQwhgrkUL0HdTQJSGlFKUaBVN6ANoFkdAjMEbQ1JlKHV9lChoBmgJaA9DCFeYvtcQFDfAlIaUUpRoFU0FAWgWR0CMwXWYF7ladX2UKGgGaAloD0MIYd7jTBOjWUCUhpRSlGgVTegDaBZHQIzJ3l6qsEJ1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d488d135e2c4895fa09c2345f3a792a042e8e5c2395ced42c6806b73771031ea
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf74165325c0530c8217a3e18d390962c4af653dfe368ae12d10a85f053f6d2
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1de12e8a9df863a09f7c7aa033ce74388a5c925ebe88a19ada02022f7e2272c6
|
3 |
+
size 243098
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 111.99609575240761, "std_reward": 89.09473122755293, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T17:54:15.086499"}
|