--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # xsum_55555_3000_1500_validation This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("KingKazma/xsum_55555_3000_1500_validation") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 3 * Number of training documents: 1500
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | hasawi - al - 24yearold - move - lansbury | 413 | -1_hasawi_al_24yearold_move | | 0 | said - mr - would - people - also | 1 | 0_said_mr_would_people | | 1 | win - said - game - united - team | 1086 | 1_win_said_game_united |
## Training hyperparameters * calculate_probabilities: True * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.31.0 * Numba: 0.57.1 * Plotly: 5.13.1 * Python: 3.10.12