--- license: apache-2.0 tags: - generated_from_trainer datasets: - minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3252656434474616 --- # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.8008 - Wer Ortho: 0.3523 - Wer: 0.3253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.593 | 1.79 | 50 | 1.0054 | 0.5003 | 0.4185 | | 0.3982 | 3.57 | 100 | 0.7250 | 0.4121 | 0.3554 | | 0.2075 | 5.36 | 150 | 0.6898 | 0.4226 | 0.3518 | | 0.0957 | 7.14 | 200 | 0.6909 | 0.4028 | 0.3371 | | 0.0412 | 8.93 | 250 | 0.7296 | 0.3695 | 0.3300 | | 0.0186 | 10.71 | 300 | 0.7522 | 0.3627 | 0.3270 | | 0.008 | 12.5 | 350 | 0.7703 | 0.3584 | 0.3288 | | 0.0049 | 14.29 | 400 | 0.7756 | 0.3553 | 0.3294 | | 0.0032 | 16.07 | 450 | 0.7889 | 0.3516 | 0.3235 | | 0.0023 | 17.86 | 500 | 0.8008 | 0.3523 | 0.3253 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3