File size: 1,327 Bytes
9312edf
 
 
 
 
 
 
 
 
 
885be1f
9312edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd8aef1
8e56bd5
bd8aef1
 
 
fcdecad
 
5174718
fcdecad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
language:
- "lzh"
tags:
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/roberta-classical-chinese-base-char
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "孟子見梁惠王"
---

# roberta-classical-chinese-base-ud-goeswith

## Model Description

This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char) and [UD_Classical_Chinese-Kyoto](https://github.com/UniversalDependencies/UD_Classical_Chinese-Kyoto).

## How to Use

```py
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-classical-chinese-base-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("孟子見梁惠王"))
```

## Reference

Koichi Yasuoka: [Sequence-Labeling RoBERTa Model for Dependency-Parsing in Classical Chinese and Its Application to Vietnamese and Thai](https://doi.org/10.1109/ICBIR57571.2023.10147628), ICBIR 2023: 8th International Conference on Business and Industrial Research (May 2023), pp.169-173.