TTS / TTSModel.py
Krisshvamsi's picture
Update TTSModel.py
c6f3d36 verified
raw
history blame
5.8 kB
import re
import logging
import torch
import torchaudio
import random
import speechbrain as sb
import torch as nn
from speechbrain.utils.fetching import fetch
from speechbrain.inference.interfaces import Pretrained
from speechbrain.inference.text import GraphemeToPhoneme
logger = logging.getLogger(__name__)
class TTSModel(Pretrained):
"""
A ready-to-use wrapper for Transformer TTS (text -> mel_spec).
Arguments
---------
hparams
Hyperparameters (from HyperPyYAML)"""
HPARAMS_NEEDED = ["model", "blank_index", "padding_mask", "lookahead_mask", "mel_spec_feats", "label_encoder"]
MODULES_NEEDED = ["modules"]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.label_encoder = self.hparams.label_encoder
self.label_encoder.update_from_iterable(self.hparams["lexicon"], sequence_input=False)
self.g2p = GraphemeToPhoneme.from_hparams("speechbrain/soundchoice-g2p")
def text_to_phoneme(self, text):
"""
Generates phoneme sequences for the given text using a Grapheme-to-Phoneme (G2P) model.
Args:
text (str): The input text.
Returns:
list: List of phoneme sequences for the words in the text.
"""
abbreviation_expansions = {
"Mr.": "Mister",
"Mrs.": "Misess",
"Dr.": "Doctor",
"No.": "Number",
"St.": "Saint",
"Co.": "Company",
"Jr.": "Junior",
"Maj.": "Major",
"Gen.": "General",
"Drs.": "Doctors",
"Rev.": "Reverend",
"Lt.": "Lieutenant",
"Hon.": "Honorable",
"Sgt.": "Sergeant",
"Capt.": "Captain",
"Esq.": "Esquire",
"Ltd.": "Limited",
"Col.": "Colonel",
"Ft.": "Fort"
}
# Expand abbreviations
for abbreviation, expansion in abbreviation_expansions.items():
text = text.replace(abbreviation, expansion)
phonemes = self.g2p(text)
phonemes = self.label_encoder.encode_sequence(phonemes)
phoneme_seq = torch.LongTensor(phonemes)
return phoneme_seq, len(phoneme_seq)
def encode_batch(self, texts):
"""Computes mel-spectrogram for a list of texts
Texts must be sorted in decreasing order on their lengths
Arguments
---------
texts: List[str]
texts to be encoded into spectrogram
Returns
-------
tensors of output spectrograms, output lengths and alignments
"""
with torch.no_grad():
phoneme_seqs = [self.text_to_phoneme(text)[0] for text in texts]
phoneme_seqs_padded, input_lengths = self.pad_sequences(phoneme_seqs)
encoded_phoneme = self.mods.encoder_emb(phoneme_seqs_padded)
encoder_emb = self.mods.enc_pre_net(encoded_phoneme)
pos_emb_enc = self.mods.pos_emb_enc(encoder_emb)
encoder_emb = encoder_emb + pos_emb_enc
stop_generated = False
decoder_input = torch.zeros(1, 80, 1, device=self.device)
stop_tokens_logits = []
max_generation_length = 1000
sequence_length = 0
result = []
result.append(decoder_input)
src_mask = torch.zeros(encoder_emb.size(1), encoder_emb.size(1), device=self.device)
src_key_padding_mask = self.hparams.padding_mask(encoder_emb, self.hparams.blank_index)
while not stop_generated and sequence_length < max_generation_length:
encoded_mel = self.mods.dec_pre_net(decoder_input)
pos_emb_dec = self.mods.pos_emb_dec(encoded_mel)
decoder_emb = encoded_mel + pos_emb_dec
decoder_output = self.mods.Seq2SeqTransformer(
encoder_emb, decoder_emb, src_mask=src_mask,
src_key_padding_mask=src_key_padding_mask)
mel_output = self.mods.mel_lin(decoder_output)
stop_token_logit = self.mods.stop_lin(decoder_output).squeeze(-1)
post_mel_outputs = self.mods.postnet(mel_output.to(self.device))
refined_mel_output = mel_output + post_mel_outputs.to(self.device)
refined_mel_output = refined_mel_output.transpose(1, 2)
stop_tokens_logits.append(stop_token_logit)
stop_token_probs = torch.sigmoid(stop_token_logit)
if torch.any(stop_token_probs[:, -1] >= self.hparams.stop_threshold):
stop_generated = True
decoder_input = refined_mel_output
result.append(decoder_input)
sequence_length += 1
results = torch.cat(result, dim=2)
stop_tokens_logits = torch.cat(stop_tokens_logits, dim=1)
return results
def pad_sequences(self, sequences):
"""Pad sequences to the maximum length sequence in the batch.
Arguments
---------
sequences: List[torch.Tensor]
The sequences to pad
Returns
-------
Padded sequences and original lengths
"""
max_length = max([len(seq) for seq in sequences])
padded_seqs = torch.zeros(len(sequences), max_length, dtype=torch.long)
lengths = []
for i, seq in enumerate(sequences):
length = len(seq)
padded_seqs[i, :length] = seq
lengths.append(length)
return padded_seqs, torch.tensor(lengths)
def encode_text(self, text):
"""Runs inference for a single text str"""
return self.encode_batch(text)
def forward(self, texts):
"Encodes the input texts."
return self.encode_batch(texts)