Krisshvamsi
commited on
Commit
•
bd0655f
1
Parent(s):
caa1859
Upload 2 files
Browse files- model.ckpt +3 -0
- models.py +240 -0
model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45e8e10afd13fa8bf1563f8babdc4779d3316ec227eaabf8c57dab9e4f794ded
|
3 |
+
size 226346982
|
models.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def dynamic_batch_collate(batch):
|
10 |
+
"""
|
11 |
+
Collates batches dynamically based on the length of sequences within each batch.
|
12 |
+
This function ensures that each batch contains sequences of similar lengths,
|
13 |
+
optimizing padding and computational efficiency.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
batch: A list of dictionaries, each containing 'id', 'phoneme_seq_encoded',
|
17 |
+
'mel_spectrogram', 'mel_length', 'stop_token_targets'.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
A batch of sequences where sequences are padded to match the longest sequence in the batch.
|
21 |
+
"""
|
22 |
+
# Sort the batch by 'mel_length' in descending order for efficient packing
|
23 |
+
batch.sort(key=lambda x: x['mel_lengths'], reverse=True)
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
# Extract sequences and their lengths
|
27 |
+
ids = [item['id'] for item in batch]
|
28 |
+
phoneme_seqs = [item['phoneme_seq_encoded'] for item in batch]
|
29 |
+
mel_specs = [item['mel_spec'] for item in batch]
|
30 |
+
#bos_mel_specs = [item['bos_mel_spectrogram'] for item in batch]
|
31 |
+
#eos_mel_specs = [item['eos_mel_spectrogram'] for item in batch]
|
32 |
+
mel_lengths = torch.tensor([item['mel_lengths'] for item in batch], device=device)
|
33 |
+
stop_token_targets = [item['stop_token_targets'] for item in batch]
|
34 |
+
|
35 |
+
# Pad phoneme sequences
|
36 |
+
phoneme_seq_padded = torch.nn.utils.rnn.pad_sequence(phoneme_seqs, batch_first=True, padding_value=0).to(device)
|
37 |
+
|
38 |
+
# Find the maximum mel length for padding
|
39 |
+
max_len = max(mel_lengths).item()
|
40 |
+
num_mel_bins = 80
|
41 |
+
|
42 |
+
mel_specs_padded = torch.zeros((len(mel_specs), num_mel_bins, max_len), device=device)
|
43 |
+
for i, mel in enumerate(mel_specs):
|
44 |
+
mel_len = mel.shape[1]
|
45 |
+
mel_specs_padded[i, :, :mel_len] = mel.to(device)
|
46 |
+
|
47 |
+
# # Pad mel spectrograms
|
48 |
+
# bos_mel_specs_padded = torch.zeros((len(bos_mel_specs), num_mel_bins, max_len), device=device)
|
49 |
+
# for i, mel in enumerate(bos_mel_specs):
|
50 |
+
# mel_len = mel.shape[1]
|
51 |
+
# bos_mel_specs_padded[i, :, :mel_len] = mel.to(device)
|
52 |
+
#
|
53 |
+
# eos_mel_specs_padded = torch.zeros((len(eos_mel_specs), num_mel_bins, max_len), device=device)
|
54 |
+
# for i, mel in enumerate(eos_mel_specs):
|
55 |
+
# mel_len = mel.shape[1]
|
56 |
+
# eos_mel_specs_padded[i, :, :mel_len] = mel.to(device)
|
57 |
+
|
58 |
+
# Pad stop token targets
|
59 |
+
stop_token_targets_padded = torch.zeros((len(stop_token_targets), max_len), device=device)
|
60 |
+
for i, stop in enumerate(stop_token_targets):
|
61 |
+
stop_len = stop.size(0)
|
62 |
+
stop_token_targets_padded[i, :stop_len] = stop.to(device)
|
63 |
+
|
64 |
+
return ids, phoneme_seq_padded, mel_specs_padded, mel_lengths, stop_token_targets_padded
|
65 |
+
|
66 |
+
|
67 |
+
class EncoderPrenet(torch.nn.Module):
|
68 |
+
"""
|
69 |
+
Module for the encoder prenet in the Transformer-based TTS system.
|
70 |
+
|
71 |
+
This module consists of several convolutional layers followed by batch normalization,
|
72 |
+
ReLU activation, and dropout. It then performs a linear projection to the desired dimension.
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
input_dim (int): Dimension of the input features. Defaults to 512.
|
76 |
+
hidden_dim (int): Dimension of the hidden layers. Defaults to 512.
|
77 |
+
num_layers (int): Number of convolutional layers. Defaults to 3.
|
78 |
+
dropout (float): Dropout probability. Defaults to 0.2.
|
79 |
+
|
80 |
+
Inputs:
|
81 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, input_dim).
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor of shape (batch_size, seq_len, hidden_dim). """
|
85 |
+
def __init__(self, input_dim=512, hidden_dim=512, num_layers=3, dropout=0.2):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
# Convolutional layers
|
89 |
+
conv_layers = []
|
90 |
+
for _ in range(num_layers):
|
91 |
+
conv_layers.append(nn.Conv1d(hidden_dim, hidden_dim, kernel_size=3, padding=1))
|
92 |
+
conv_layers.append(nn.BatchNorm1d(hidden_dim))
|
93 |
+
conv_layers.append(nn.ReLU())
|
94 |
+
conv_layers.append(nn.Dropout(dropout))
|
95 |
+
self.conv_layers = nn.Sequential(*conv_layers)
|
96 |
+
|
97 |
+
# Final linear projection
|
98 |
+
self.projection = nn.Linear(hidden_dim, hidden_dim)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = x.transpose(1, 2) # Transpose for convolutional layers (Batch, SeqLen, Channels)
|
102 |
+
x = self.conv_layers(x)
|
103 |
+
x = x.transpose(1, 2) # Transpose back
|
104 |
+
x = self.projection(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class DecoderPrenet(torch.nn.Module):
|
109 |
+
|
110 |
+
"""
|
111 |
+
Module for the decoder prenet in the Transformer-based TTS system.
|
112 |
+
|
113 |
+
This module consists of two fully connected layers followed by ReLU activation,
|
114 |
+
and performs a linear projection to the desired output dimension.
|
115 |
+
|
116 |
+
Parameters:
|
117 |
+
input_dim (int): Dimension of the input features. Defaults to 80.
|
118 |
+
hidden_dim (int): Dimension of the hidden layers. Defaults to 256.
|
119 |
+
output_dim (int): Dimension of the output features. Defaults to 512.
|
120 |
+
|
121 |
+
Inputs:
|
122 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, input_dim).
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
torch.Tensor: Output tensor of shape (batch_size, seq_len, output_dim). """
|
126 |
+
|
127 |
+
def __init__(self, input_dim=80, hidden_dim=256, output_dim=512):
|
128 |
+
super().__init__()
|
129 |
+
|
130 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
131 |
+
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
132 |
+
self.projection = nn.Linear(hidden_dim, output_dim)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
x = x.transpose(1,2)
|
136 |
+
x = F.relu(self.fc1(x))
|
137 |
+
x = F.relu(self.fc2(x))
|
138 |
+
x = self.projection(x)
|
139 |
+
|
140 |
+
return x
|
141 |
+
|
142 |
+
|
143 |
+
class ScaledPositionalEncoding(nn.Module):
|
144 |
+
|
145 |
+
"""
|
146 |
+
Module for adding scaled positional encoding to input sequences.
|
147 |
+
|
148 |
+
Parameters:
|
149 |
+
d_model (int): Dimensionality of the model. It must match the embedding dimension of the input.
|
150 |
+
max_len (int): Maximum length of the input sequence. Defaults to 5000.
|
151 |
+
|
152 |
+
Inputs:
|
153 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, embedding_dim).
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
torch.Tensor: Output tensor with scaled positional encoding added, shape (batch_size, seq_len, embedding_dim). """
|
157 |
+
|
158 |
+
def __init__(self, d_model, max_len=5000):
|
159 |
+
super().__init__()
|
160 |
+
self.d_model = d_model
|
161 |
+
|
162 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
163 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
164 |
+
|
165 |
+
pe = torch.zeros(max_len, 1, d_model)
|
166 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
167 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
168 |
+
|
169 |
+
self.register_buffer('pe', pe)
|
170 |
+
self.scale = nn.Parameter(torch.ones(1))
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
"""
|
174 |
+
Adds scaled positional encoding to input tensor x.
|
175 |
+
Args:
|
176 |
+
x: Tensor of shape [batch_size, seq_len, embedding_dim]
|
177 |
+
"""
|
178 |
+
scaled_pe = self.pe[:x.size(0), :, :] * self.scale
|
179 |
+
x = x + scaled_pe
|
180 |
+
return x
|
181 |
+
|
182 |
+
|
183 |
+
class PostNet(torch.nn.Module):
|
184 |
+
|
185 |
+
"""
|
186 |
+
Post-processing network for mel-spectrogram enhancement.
|
187 |
+
|
188 |
+
This module consists of multiple convolutional layers with batch normalization and ReLU activation.
|
189 |
+
It is used to refine the mel-spectrogram output from the decoder.
|
190 |
+
|
191 |
+
Parameters:
|
192 |
+
mel_channels (int): Number of mel channels in the input mel-spectrogram.
|
193 |
+
postnet_channels (int): Number of channels in the postnet layers.
|
194 |
+
kernel_size (int): Size of the convolutional kernel.
|
195 |
+
postnet_layers (int): Number of postnet layers.
|
196 |
+
|
197 |
+
Inputs:
|
198 |
+
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, mel_channels).
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
torch.Tensor: Output tensor with refined mel-spectrogram, shape (batch_size, seq_len, mel_channels). """
|
202 |
+
|
203 |
+
|
204 |
+
def __init__(self, mel_channels, postnet_channels, kernel_size, postnet_layers):
|
205 |
+
super().__init__()
|
206 |
+
self.conv_layers = nn.ModuleList()
|
207 |
+
|
208 |
+
# First layer
|
209 |
+
self.conv_layers.append(
|
210 |
+
nn.Sequential(
|
211 |
+
nn.Conv1d(mel_channels, postnet_channels, kernel_size, padding=kernel_size // 2),
|
212 |
+
nn.BatchNorm1d(postnet_channels),
|
213 |
+
nn.ReLU()
|
214 |
+
)
|
215 |
+
)
|
216 |
+
|
217 |
+
# Middle layers
|
218 |
+
for _ in range(1, postnet_layers - 1):
|
219 |
+
self.conv_layers.append(
|
220 |
+
nn.Sequential(
|
221 |
+
nn.Conv1d(postnet_channels, postnet_channels, kernel_size, padding=kernel_size // 2),
|
222 |
+
nn.BatchNorm1d(postnet_channels),
|
223 |
+
nn.ReLU()
|
224 |
+
)
|
225 |
+
)
|
226 |
+
|
227 |
+
# Final layer
|
228 |
+
self.conv_layers.append(
|
229 |
+
nn.Sequential(
|
230 |
+
nn.Conv1d(postnet_channels, mel_channels, kernel_size, padding=kernel_size // 2),
|
231 |
+
nn.BatchNorm1d(mel_channels)
|
232 |
+
)
|
233 |
+
)
|
234 |
+
|
235 |
+
def forward(self, x):
|
236 |
+
x = x.transpose(1, 2)
|
237 |
+
for conv in self.conv_layers:
|
238 |
+
x = conv(x)
|
239 |
+
x = x.transpose(1, 2)
|
240 |
+
return x
|