File size: 8,468 Bytes
624b1ad
 
 
 
 
 
 
 
3509728
624b1ad
 
 
 
 
 
3509728
624b1ad
e44beec
 
3509728
624b1ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: MedMobile
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MedMobile

Manuscript: https://arxiv.org/abs/2410.09019

This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on the UltraMedical dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7358

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.8656        | 0.0225 | 200   | 0.7711          |
| 0.7615        | 0.0451 | 400   | 0.7521          |
| 0.748         | 0.0676 | 600   | 0.7457          |
| 0.7465        | 0.0902 | 800   | 0.7428          |
| 0.7468        | 0.1127 | 1000  | 0.7419          |
| 0.7434        | 0.1352 | 1200  | 0.7429          |
| 0.7467        | 0.1578 | 1400  | 0.7451          |
| 0.7508        | 0.1803 | 1600  | 0.7469          |
| 0.7505        | 0.2029 | 1800  | 0.7503          |
| 0.7541        | 0.2254 | 2000  | 0.7531          |
| 0.7559        | 0.2479 | 2200  | 0.7576          |
| 0.7592        | 0.2705 | 2400  | 0.7599          |
| 0.7729        | 0.2930 | 2600  | 0.7635          |
| 0.772         | 0.3156 | 2800  | 0.7645          |
| 0.7707        | 0.3381 | 3000  | 0.7628          |
| 0.7616        | 0.3606 | 3200  | 0.7614          |
| 0.7632        | 0.3832 | 3400  | 0.7590          |
| 0.7613        | 0.4057 | 3600  | 0.7574          |
| 0.7581        | 0.4283 | 3800  | 0.7558          |
| 0.7583        | 0.4508 | 4000  | 0.7539          |
| 0.7509        | 0.4733 | 4200  | 0.7518          |
| 0.7559        | 0.4959 | 4400  | 0.7506          |
| 0.7523        | 0.5184 | 4600  | 0.7491          |
| 0.7461        | 0.5410 | 4800  | 0.7469          |
| 0.7504        | 0.5635 | 5000  | 0.7464          |
| 0.7486        | 0.5860 | 5200  | 0.7449          |
| 0.7454        | 0.6086 | 5400  | 0.7436          |
| 0.7451        | 0.6311 | 5600  | 0.7427          |
| 0.7431        | 0.6537 | 5800  | 0.7412          |
| 0.7438        | 0.6762 | 6000  | 0.7402          |
| 0.7471        | 0.6987 | 6200  | 0.7390          |
| 0.7416        | 0.7213 | 6400  | 0.7378          |
| 0.7345        | 0.7438 | 6600  | 0.7364          |
| 0.7437        | 0.7663 | 6800  | 0.7349          |
| 0.7431        | 0.7889 | 7000  | 0.7349          |
| 0.737         | 0.8114 | 7200  | 0.7339          |
| 0.7358        | 0.8340 | 7400  | 0.7333          |
| 0.7336        | 0.8565 | 7600  | 0.7320          |
| 0.7327        | 0.8790 | 7800  | 0.7310          |
| 0.7288        | 0.9016 | 8000  | 0.7303          |
| 0.7326        | 0.9241 | 8200  | 0.7295          |
| 0.7354        | 0.9467 | 8400  | 0.7287          |
| 0.731         | 0.9692 | 8600  | 0.7278          |
| 0.7317        | 0.9917 | 8800  | 0.7272          |
| 0.6809        | 1.0143 | 9000  | 0.7359          |
| 0.6548        | 1.0368 | 9200  | 0.7341          |
| 0.6463        | 1.0594 | 9400  | 0.7353          |
| 0.6516        | 1.0819 | 9600  | 0.7357          |
| 0.6544        | 1.1044 | 9800  | 0.7345          |
| 0.6558        | 1.1270 | 10000 | 0.7342          |
| 0.6532        | 1.1495 | 10200 | 0.7331          |
| 0.653         | 1.1721 | 10400 | 0.7328          |
| 0.6583        | 1.1946 | 10600 | 0.7323          |
| 0.6537        | 1.2171 | 10800 | 0.7326          |
| 0.6622        | 1.2397 | 11000 | 0.7318          |
| 0.6596        | 1.2622 | 11200 | 0.7315          |
| 0.6522        | 1.2848 | 11400 | 0.7304          |
| 0.6517        | 1.3073 | 11600 | 0.7300          |
| 0.657         | 1.3298 | 11800 | 0.7296          |
| 0.6554        | 1.3524 | 12000 | 0.7286          |
| 0.6545        | 1.3749 | 12200 | 0.7287          |
| 0.6556        | 1.3975 | 12400 | 0.7283          |
| 0.655         | 1.4200 | 12600 | 0.7294          |
| 0.6489        | 1.4425 | 12800 | 0.7285          |
| 0.6539        | 1.4651 | 13000 | 0.7269          |
| 0.654         | 1.4876 | 13200 | 0.7273          |
| 0.6556        | 1.5102 | 13400 | 0.7273          |
| 0.6529        | 1.5327 | 13600 | 0.7271          |
| 0.6504        | 1.5552 | 13800 | 0.7264          |
| 0.6498        | 1.5778 | 14000 | 0.7256          |
| 0.6517        | 1.6003 | 14200 | 0.7255          |
| 0.656         | 1.6229 | 14400 | 0.7252          |
| 0.6471        | 1.6454 | 14600 | 0.7242          |
| 0.6485        | 1.6679 | 14800 | 0.7243          |
| 0.6545        | 1.6905 | 15000 | 0.7242          |
| 0.6527        | 1.7130 | 15200 | 0.7238          |
| 0.6504        | 1.7356 | 15400 | 0.7236          |
| 0.6492        | 1.7581 | 15600 | 0.7229          |
| 0.6529        | 1.7806 | 15800 | 0.7232          |
| 0.6507        | 1.8032 | 16000 | 0.7226          |
| 0.653         | 1.8257 | 16200 | 0.7229          |
| 0.6461        | 1.8483 | 16400 | 0.7223          |
| 0.6453        | 1.8708 | 16600 | 0.7221          |
| 0.6534        | 1.8933 | 16800 | 0.7219          |
| 0.6455        | 1.9159 | 17000 | 0.7220          |
| 0.6485        | 1.9384 | 17200 | 0.7212          |
| 0.6536        | 1.9610 | 17400 | 0.7214          |
| 0.6444        | 1.9835 | 17600 | 0.7211          |
| 0.6346        | 2.0060 | 17800 | 0.7356          |
| 0.5929        | 2.0286 | 18000 | 0.7368          |
| 0.5951        | 2.0511 | 18200 | 0.7371          |
| 0.6013        | 2.0736 | 18400 | 0.7374          |
| 0.6004        | 2.0962 | 18600 | 0.7375          |
| 0.5991        | 2.1187 | 18800 | 0.7375          |
| 0.5971        | 2.1413 | 19000 | 0.7369          |
| 0.597         | 2.1638 | 19200 | 0.7380          |
| 0.5951        | 2.1863 | 19400 | 0.7370          |
| 0.5916        | 2.2089 | 19600 | 0.7370          |
| 0.5992        | 2.2314 | 19800 | 0.7372          |
| 0.6011        | 2.2540 | 20000 | 0.7364          |
| 0.6003        | 2.2765 | 20200 | 0.7370          |
| 0.6003        | 2.2990 | 20400 | 0.7370          |
| 0.5985        | 2.3216 | 20600 | 0.7370          |
| 0.5988        | 2.3441 | 20800 | 0.7367          |
| 0.5959        | 2.3667 | 21000 | 0.7370          |
| 0.6019        | 2.3892 | 21200 | 0.7370          |
| 0.5977        | 2.4117 | 21400 | 0.7367          |
| 0.602         | 2.4343 | 21600 | 0.7368          |
| 0.5958        | 2.4568 | 21800 | 0.7368          |
| 0.5969        | 2.4794 | 22000 | 0.7360          |
| 0.6025        | 2.5019 | 22200 | 0.7362          |
| 0.5942        | 2.5244 | 22400 | 0.7361          |
| 0.6006        | 2.5470 | 22600 | 0.7361          |
| 0.5952        | 2.5695 | 22800 | 0.7366          |
| 0.6007        | 2.5921 | 23000 | 0.7363          |
| 0.6003        | 2.6146 | 23200 | 0.7363          |
| 0.6006        | 2.6371 | 23400 | 0.7359          |
| 0.6014        | 2.6597 | 23600 | 0.7360          |
| 0.6008        | 2.6822 | 23800 | 0.7356          |
| 0.6005        | 2.7048 | 24000 | 0.7357          |
| 0.5958        | 2.7273 | 24200 | 0.7356          |
| 0.5977        | 2.7498 | 24400 | 0.7358          |
| 0.6           | 2.7724 | 24600 | 0.7358          |
| 0.5978        | 2.7949 | 24800 | 0.7362          |
| 0.6018        | 2.8175 | 25000 | 0.7359          |
| 0.6079        | 2.8400 | 25200 | 0.7359          |
| 0.6036        | 2.8625 | 25400 | 0.7359          |
| 0.5985        | 2.8851 | 25600 | 0.7359          |
| 0.6019        | 2.9076 | 25800 | 0.7359          |
| 0.5994        | 2.9302 | 26000 | 0.7358          |
| 0.6027        | 2.9527 | 26200 | 0.7358          |
| 0.6014        | 2.9752 | 26400 | 0.7358          |
| 0.5957        | 2.9978 | 26600 | 0.7358          |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1