--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-mini-LoRA-MEDQA-Extended-V3 results: [] --- # phi-3-mini-LoRA-MEDQA-Extended-V3 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7825 | 0.0882 | 200 | 0.6760 | | 0.6593 | 0.1764 | 400 | 0.6488 | | 0.6454 | 0.2646 | 600 | 0.6424 | | 0.6424 | 0.3528 | 800 | 0.6382 | | 0.6382 | 0.4410 | 1000 | 0.6358 | | 0.6342 | 0.5292 | 1200 | 0.6340 | | 0.6355 | 0.6174 | 1400 | 0.6327 | | 0.6355 | 0.7055 | 1600 | 0.6315 | | 0.6336 | 0.7937 | 1800 | 0.6307 | | 0.6321 | 0.8819 | 2000 | 0.6298 | | 0.6321 | 0.9701 | 2200 | 0.6291 | | 0.6298 | 1.0583 | 2400 | 0.6286 | | 0.6285 | 1.1465 | 2600 | 0.6280 | | 0.628 | 1.2347 | 2800 | 0.6275 | | 0.6282 | 1.3229 | 3000 | 0.6271 | | 0.6278 | 1.4111 | 3200 | 0.6267 | | 0.6257 | 1.4993 | 3400 | 0.6264 | | 0.6276 | 1.5875 | 3600 | 0.6260 | | 0.6253 | 1.6757 | 3800 | 0.6256 | | 0.6253 | 1.7639 | 4000 | 0.6253 | | 0.6242 | 1.8521 | 4200 | 0.6250 | | 0.6252 | 1.9402 | 4400 | 0.6247 | | 0.6239 | 2.0284 | 4600 | 0.6246 | | 0.6222 | 2.1166 | 4800 | 0.6244 | | 0.6226 | 2.2048 | 5000 | 0.6242 | | 0.6219 | 2.2930 | 5200 | 0.6241 | | 0.6227 | 2.3812 | 5400 | 0.6240 | | 0.6195 | 2.4694 | 5600 | 0.6239 | | 0.6219 | 2.5576 | 5800 | 0.6237 | | 0.6221 | 2.6458 | 6000 | 0.6236 | | 0.6238 | 2.7340 | 6200 | 0.6235 | | 0.621 | 2.8222 | 6400 | 0.6234 | | 0.621 | 2.9104 | 6600 | 0.6234 | | 0.6222 | 2.9986 | 6800 | 0.6233 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1