--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: phi-3-mini-LoRA results: [] --- # phi-3-mini-LoRA This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0374 | 0.0329 | 100 | 1.0194 | | 0.9715 | 0.0658 | 200 | 0.9314 | | 0.9106 | 0.0987 | 300 | 0.8969 | | 0.888 | 0.1316 | 400 | 0.8869 | | 0.8902 | 0.1645 | 500 | 0.8813 | | 0.8826 | 0.1974 | 600 | 0.8777 | | 0.8763 | 0.2303 | 700 | 0.8745 | | 0.8728 | 0.2632 | 800 | 0.8723 | | 0.8707 | 0.2961 | 900 | 0.8701 | | 0.8702 | 0.3289 | 1000 | 0.8684 | | 0.8631 | 0.3618 | 1100 | 0.8664 | | 0.8623 | 0.3947 | 1200 | 0.8647 | | 0.8655 | 0.4276 | 1300 | 0.8624 | | 0.863 | 0.4605 | 1400 | 0.8602 | | 0.858 | 0.4934 | 1500 | 0.8586 | | 0.859 | 0.5263 | 1600 | 0.8578 | | 0.8527 | 0.5592 | 1700 | 0.8569 | | 0.8587 | 0.5921 | 1800 | 0.8563 | | 0.8551 | 0.625 | 1900 | 0.8557 | | 0.8548 | 0.6579 | 2000 | 0.8550 | | 0.8515 | 0.6908 | 2100 | 0.8546 | | 0.8531 | 0.7237 | 2200 | 0.8542 | | 0.8567 | 0.7566 | 2300 | 0.8535 | | 0.8589 | 0.7895 | 2400 | 0.8532 | | 0.8547 | 0.8224 | 2500 | 0.8529 | | 0.8537 | 0.8553 | 2600 | 0.8525 | | 0.85 | 0.8882 | 2700 | 0.8521 | | 0.8518 | 0.9211 | 2800 | 0.8519 | | 0.8456 | 0.9539 | 2900 | 0.8515 | | 0.8585 | 0.9868 | 3000 | 0.8512 | | 0.849 | 1.0197 | 3100 | 0.8509 | | 0.8549 | 1.0526 | 3200 | 0.8507 | | 0.8502 | 1.0855 | 3300 | 0.8504 | | 0.8504 | 1.1184 | 3400 | 0.8502 | | 0.8488 | 1.1513 | 3500 | 0.8500 | | 0.8504 | 1.1842 | 3600 | 0.8497 | | 0.8465 | 1.2171 | 3700 | 0.8495 | | 0.8471 | 1.25 | 3800 | 0.8494 | | 0.8467 | 1.2829 | 3900 | 0.8491 | | 0.8439 | 1.3158 | 4000 | 0.8489 | | 0.8467 | 1.3487 | 4100 | 0.8487 | | 0.8461 | 1.3816 | 4200 | 0.8485 | | 0.8525 | 1.4145 | 4300 | 0.8483 | | 0.8426 | 1.4474 | 4400 | 0.8481 | | 0.8479 | 1.4803 | 4500 | 0.8480 | | 0.853 | 1.5132 | 4600 | 0.8478 | | 0.8432 | 1.5461 | 4700 | 0.8477 | | 0.8416 | 1.5789 | 4800 | 0.8475 | | 0.8527 | 1.6118 | 4900 | 0.8474 | | 0.849 | 1.6447 | 5000 | 0.8472 | | 0.8446 | 1.6776 | 5100 | 0.8471 | | 0.8427 | 1.7105 | 5200 | 0.8469 | | 0.8464 | 1.7434 | 5300 | 0.8468 | | 0.8444 | 1.7763 | 5400 | 0.8466 | | 0.8479 | 1.8092 | 5500 | 0.8465 | | 0.8452 | 1.8421 | 5600 | 0.8465 | | 0.8387 | 1.875 | 5700 | 0.8466 | | 0.845 | 1.9079 | 5800 | 0.8463 | | 0.8402 | 1.9408 | 5900 | 0.8461 | | 0.8459 | 1.9737 | 6000 | 0.8460 | | 0.8431 | 2.0066 | 6100 | 0.8460 | | 0.8395 | 2.0395 | 6200 | 0.8459 | | 0.8395 | 2.0724 | 6300 | 0.8458 | | 0.8457 | 2.1053 | 6400 | 0.8457 | | 0.8438 | 2.1382 | 6500 | 0.8457 | | 0.8411 | 2.1711 | 6600 | 0.8456 | | 0.8386 | 2.2039 | 6700 | 0.8456 | | 0.8393 | 2.2368 | 6800 | 0.8454 | | 0.8406 | 2.2697 | 6900 | 0.8454 | | 0.8386 | 2.3026 | 7000 | 0.8453 | | 0.8456 | 2.3355 | 7100 | 0.8453 | | 0.8424 | 2.3684 | 7200 | 0.8452 | | 0.8437 | 2.4013 | 7300 | 0.8451 | | 0.8426 | 2.4342 | 7400 | 0.8451 | | 0.8393 | 2.4671 | 7500 | 0.8450 | | 0.8398 | 2.5 | 7600 | 0.8450 | | 0.8434 | 2.5329 | 7700 | 0.8449 | | 0.8456 | 2.5658 | 7800 | 0.8449 | | 0.8393 | 2.5987 | 7900 | 0.8449 | | 0.8401 | 2.6316 | 8000 | 0.8448 | | 0.838 | 2.6645 | 8100 | 0.8448 | | 0.8432 | 2.6974 | 8200 | 0.8447 | | 0.8471 | 2.7303 | 8300 | 0.8447 | | 0.8435 | 2.7632 | 8400 | 0.8446 | | 0.8441 | 2.7961 | 8500 | 0.8446 | | 0.8399 | 2.8289 | 8600 | 0.8446 | | 0.8391 | 2.8618 | 8700 | 0.8446 | | 0.8432 | 2.8947 | 8800 | 0.8446 | | 0.8459 | 2.9276 | 8900 | 0.8446 | | 0.8446 | 2.9605 | 9000 | 0.8445 | | 0.8412 | 2.9934 | 9100 | 0.8445 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1