a2c-AntBulletEnv-v0 / config.json
Ktang2k's picture
Initial commit
5464a4f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5390ea5c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5390ea5ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5390ea5d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5390ea5dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f5390ea5e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f5390ea5ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5390ea5f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5390ea8040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5390ea80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5390ea8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5390ea81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5390ea8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5390ea7380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684158917784352153, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjE8vaG9tZS9rZW50L2NvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxPL2hvbWUva2VudC9jb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALS2Ir8SMP29rScVPxM8Dz9EYSy/z2PHPgibJj9cTke/jYRIv55doD/ocUA/dvWBPnNWF8CFjvA/jkfPPl4W4r6OKqu/XhCHPjlVgT/de2o8He6Sv84Hgb27S1C/ae+GvMPZ/T6s2KM+E1AsP+EFgb/Lp3Q/jottv6Yxur8+960/+nmBv90kxL58ybS/HI9ev8+EF7/LxJC/AQtHPxav/z9o5ow/kQSgv7Biyz5bVGs/ffcKvkQ0J77s5iY/LOUsQLS0/rzb0Ea/8+Clvv8osj/D2f0+rNijPnEqvr/hBYG/g9wyP1xoWr9D59K/VPMcP6ybRb9Xlz7AYk65vwhWAL92Jss+CVvcvwAzEr/Fxaq8eqGoPxWUJb0gfgw+zjKvPkPEBr56aQlA6H5lvzsFKkAgS6I/QioNQLfWnT7P1itAw9n9PqzYoz5xKr6/4QWBv9wj4D9MvmO/I+SsvtrNrT+RxjE9WkTJv6tLtr/LgaS/A4OkP73Kgr/y+x++gl3fv/hkqT8TfW0+S0UPPoUmxz6aC5W/vpi/P+JwFMDCrto+RbFhPuTTGEBxZgK/RvCjP3IVAcCs2KM+E1AsP+EFgb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+IaM0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQef8vQAAAAClQPK/AAAAABh217wAAAAAON3ZPwAAAABi77k7AAAAACBT5D8AAAAAkIC+PQAAAADlYOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAll+9NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO75j70AAAAAsm31vwAAAACKNfw8AAAAAGpa6z8AAAAABln2PQAAAADTe/E/AAAAAAdXyLwAAAAAQGDzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPzMJ7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDQqYA9AAAAAMSb3r8AAAAA0jbHPQAAAABWhdo/AAAAAG8gQr0AAAAA7HwAQAAAAACSXsQ9AAAAALaH5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABl7+S1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQZCDPQAAAABb4N+/AAAAAHp3qj0AAAAAERT1PwAAAACPp4e9AAAAAEEc6D8AAAAA2GPsPAAAAAB/VfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZJebd8ArCMAWyUTegDjAF0lEdApcA58QZn+XV9lChoBkdAl1w3IEKVp2gHTegDaAhHQKXA/bGFSKp1fZQoaAZHQJqKoAxSHdpoB03oA2gIR0ClwTptix3WdX2UKGgGR0CaykNLlFMJaAdN6ANoCEdApcOa6FuejHV9lChoBkdAmWe6/VRUFWgHTegDaAhHQKXHdEYwZfl1fZQoaAZHQJRak8lolD5oB03oA2gIR0ClyDoWxhUjdX2UKGgGR0CaEGXsgMc7aAdN6ANoCEdApch5ASnLq3V9lChoBkdAmEI0rwvxpmgHTegDaAhHQKXK310T1011fZQoaAZHQJZWPNVzZHxoB03oA2gIR0ClzqerlvIfdX2UKGgGR0CY5ovkRzzVaAdN6ANoCEdApc9ls7+1jXV9lChoBkdAmAQJ9AooeGgHTegDaAhHQKXPoSyt3fR1fZQoaAZHQJjWp9jPOY9oB03oA2gIR0Cl0gRvWH1wdX2UKGgGR0CYOzfBN21VaAdN6ANoCEdApdXGUGFBY3V9lChoBkdAmN0ubmU4aWgHTegDaAhHQKXWiRDCxeN1fZQoaAZHQJfuAl5WzWxoB03oA2gIR0Cl1sWS+xnndX2UKGgGR0CYX77FKkEcaAdN6ANoCEdApdkjqv/za3V9lChoBkdAiwnFBQemvWgHTegDaAhHQKXc965XlsB1fZQoaAZHQJCoN1p0wJxoB03oA2gIR0Cl3bpAt4A0dX2UKGgGR0CO0qODrZ8KaAdN6ANoCEdApd33DR+jM3V9lChoBkdAlrS0hq0ty2gHTegDaAhHQKXgSvNeMQ51fZQoaAZHQJZ7KVD8cdZoB03oA2gIR0Cl4/WYnfEXdX2UKGgGR0CWaVFGoaUBaAdN6ANoCEdApeSzCiyprHV9lChoBkdAlNyny7PIGWgHTegDaAhHQKXk8E2YOUd1fZQoaAZHQJPP+QdS2phoB03oA2gIR0Cl50RISUTtdX2UKGgGR0CRu/HXmNipaAdN6ANoCEdApesQ+yJKrnV9lChoBkdAlKFx7/n4f2gHTegDaAhHQKXr1yiEg4h1fZQoaAZHQJXDqwHJLdxoB03oA2gIR0Cl7BWHLzPKdX2UKGgGR0CU+pbrkbPyaAdN6ANoCEdApe5ipgkTpXV9lChoBkdAlus2FWXC0mgHTegDaAhHQKXyFGwRoRJ1fZQoaAZHQJZIf40uUUxoB03oA2gIR0Cl8tdU0elsdX2UKGgGR0CTilsANoalaAdN6ANoCEdApfMXgLqlg3V9lChoBkdAlN4voq0+kmgHTegDaAhHQKX1dKDkELZ1fZQoaAZHQJUZEsTWXkZoB03oA2gIR0Cl+UEQf6oEdX2UKGgGR0CXglZyMkyDaAdN6ANoCEdApfoDiyY5UHV9lChoBkdAlJi6Rhc7hmgHTegDaAhHQKX6QMQVbiZ1fZQoaAZHQJWzCMir1dxoB03oA2gIR0Cl/JWcJ+lTdX2UKGgGR0CZ/UD50r9VaAdN6ANoCEdApgBJmVZ9u3V9lChoBkdAl3WwLux8lWgHTegDaAhHQKYBBMkhRqJ1fZQoaAZHQJmf7Ggi/wloB03oA2gIR0CmAUCCJ40NdX2UKGgGR0CTmUMmF8G+aAdN6ANoCEdApgOOlImPYHV9lChoBkdAk0XrmMfigmgHTegDaAhHQKYHRllsguB1fZQoaAZHQJao+64Ds+poB03oA2gIR0CmCARlYlpodX2UKGgGR0CTKuxgy/KyaAdN6ANoCEdApghBOUMXrXV9lChoBkdAkPcMohIOH2gHTegDaAhHQKYKoJWvKU51fZQoaAZHQIh0dhXr+o9oB03oA2gIR0CmDnBF/hESdX2UKGgGR0CXYGOU+s5oaAdN6ANoCEdApg8wSSNfgXV9lChoBkdAlOrN3GGVRmgHTegDaAhHQKYPbbr1M/R1fZQoaAZHQJPdhQoCuEFoB03oA2gIR0CmEb71RLsbdX2UKGgGR0CUoAbX6InCaAdN6ANoCEdAphV+MIeHSHV9lChoBkdAlnL3iiqQzWgHTegDaAhHQKYWPSk0rLB1fZQoaAZHQJaeOKcd5ptoB03oA2gIR0CmFnnRCx/vdX2UKGgGR0CNx7SZSeiBaAdN6ANoCEdAphjP+fh/AnV9lChoBkdAl4GeMhouf2gHTegDaAhHQKYcgnVoYel1fZQoaAZHQJgyiglF+d9oB03oA2gIR0CmHT01hsqKdX2UKGgGR0CYnf+iJwbVaAdN6ANoCEdAph15WtEG7nV9lChoBkdAmHQN9hJAdGgHTegDaAhHQKYfzgqEvkB1fZQoaAZHQJaUn0qYqoZoB03oA2gIR0CmI4Fa0QbudX2UKGgGR0CYH56vJRwZaAdN6ANoCEdApiQ8yBTXKHV9lChoBkdAlyfXmvGIbmgHTegDaAhHQKYkeIInjQ11fZQoaAZHQJcOLz+WGAVoB03oA2gIR0CmJsLR0EHMdX2UKGgGR0CVqeaOgg5jaAdN6ANoCEdApiprFdcB2nV9lChoBkdAldcOAiFCcGgHTegDaAhHQKYrJaBZpzt1fZQoaAZHQJjQRYp2EChoB03oA2gIR0CmK2HsC1Z1dX2UKGgGR0CSTA5S3solaAdN6ANoCEdApi2yv9tMwnV9lChoBkdAk2yvjbSJCWgHTegDaAhHQKYxeg6ltTF1fZQoaAZHQJMXWifxtpFoB03oA2gIR0CmMjbWVeKLdX2UKGgGR0CSFbPOIInjaAdN6ANoCEdApjJyU/wAl3V9lChoBkdAlduYhEBsAWgHTegDaAhHQKY0uxzq8lJ1fZQoaAZHQJd3QslLOA1oB03oA2gIR0CmOG34CZF5dX2UKGgGR0CVcb29+PRzaAdN6ANoCEdApjktqxkd3nV9lChoBkdAmZ4U70WdmWgHTegDaAhHQKY5a32mHgx1fZQoaAZHQJays+hXbM5oB03oA2gIR0CmO8m9xp+MdX2UKGgGR0CY4riXpnpTaAdN6ANoCEdApj97K1XvIHV9lChoBkdAmZcNAHE/B2gHTegDaAhHQKZAOErXlKd1fZQoaAZHQJe4YbBGhEloB03oA2gIR0CmQHSWqtHQdX2UKGgGR0CXxfRW912aaAdN6ANoCEdApkLKaoddV3V9lChoBkdAmd4GeUY8+2gHTegDaAhHQKZGg35vcah1fZQoaAZHQJXPXMzMzM1oB03oA2gIR0CmRz8mShaldX2UKGgGR0CaEbevpyIYaAdN6ANoCEdApkd/82rGR3V9lChoBkdAl22OxGDtgWgHTegDaAhHQKZJzOtW+491fZQoaAZHQJVvqC7K7qZoB03oA2gIR0CmTXoVmBe5dX2UKGgGR0CVLJupS75EaAdN6ANoCEdApk48PMB6r3V9lChoBkdAlREuCXhOxmgHTegDaAhHQKZOeUeMhox1fZQoaAZHQJijWuyNXHRoB03oA2gIR0CmUMe6Ae7udX2UKGgGR0CW6f3solUqaAdN6ANoCEdAplSI5T6zmnV9lChoBkdAlyPya/h2n2gHTegDaAhHQKZVRUWEbo91fZQoaAZHQJjheIcinpBoB03oA2gIR0CmVYDiGWUsdX2UKGgGR0CXwK9IwudxaAdN6ANoCEdAplfVzySV4XV9lChoBkdAlVUoqLCN0mgHTegDaAhHQKZbkWweNkx1fZQoaAZHQJfkxYoy9EloB03oA2gIR0CmXE6PsAvMdX2UKGgGR0CS08V94NZvaAdN6ANoCEdAplyK1y/9HnV9lChoBkdAlZ7Ap4KQaWgHTegDaAhHQKZe3Bsyi251fZQoaAZHQJErhOFg2IhoB03oA2gIR0CmYoPpyIYWdX2UKGgGR0CV/gdfb9IgaAdN6ANoCEdApmNFGTcIq3V9lChoBkdAkG4HX7Lt/mgHTegDaAhHQKZjgxWT5ft1fZQoaAZHQI99Bsfq5b1oB03oA2gIR0CmZexKHwgDdX2UKGgGR0CLw1BAv+OwaAdN6ANoCEdApmmjwjMV13V9lChoBkdAk4BBzzVc2WgHTegDaAhHQKZqZs+FDfF1fZQoaAZHQJQEnNzKcNJoB03oA2gIR0CmaqO+RHPNdX2UKGgGR0CQ4xxWT5fuaAdN6ANoCEdApmzxM+NcW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-71-generic-x86_64-with-glibc2.35 # 78-Ubuntu SMP Tue Apr 18 09:00:29 UTC 2023", "Python": "3.9.13", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}