{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f449effb600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684258161907528944, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZm6ziRo9E9oaW1u5mcSr5QVZ+8Jqr9OgAAAAAAAAAAM0VlPIW73bnkkow5hv8WNOwGF7smgaO4AACAPwAAgD+zPsa+QxZBP401AL4Ueru+tbiwvqHTFT4AAAAAAAAAADPNsr1S2Mu5K+HoOgBpvjWU3yU7IJYHugAAgD8AAIA/rWt9PlTqMb1QGxE8YRi1ulBTnL6LZ4K7AACAPwAAgD/gDls+ayxaP8oo/z0HILO+i3UnPlLCpb0AAAAAAAAAAJq2tTwUYKq6CGe1NuTsrjEDIYY6KO7TtQAAgD8AAIA/ZuaZvFLw3bkyvou7wrhDOKxPbDo9wHw4AACAPwAAgD/mpUY95raiPyyQlT7NfrS+rQ+2PMbyfT0AAAAAAAAAALNkZT20TUM+rdUvPbxqM74IXYA9Js/8vAAAAAAAAAAAM+muvXZLnj8NrEK+lPKjvqJPBr5AMuO3AAAAAAAAAACaBiy99sxgukaEgTiBe+cz/c9/N2LMlbcAAIA/AACAP5pl17z23B26XFsmOL5BGzP2kW26KjtGtwAAgD8AAIA/M1N3PcuOYj87bkG8sUCIvts/CTzyh+68AAAAAAAAAABA/oW9e+KluhJZPzrctxY2GOaBuqriDDUAAAAAAACAPzNfKz0pVDu6PVYtuQNg3DUgH547zHFEtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUDB7/n4fyMAWyUTegDjAF0lEdAlRBuqJdjXnV9lChoBkdAY0Z8m8dxQ2gHTegDaAhHQJUUIH2RJVd1fZQoaAZHQGEPSMLncL1oB03oA2gIR0CVGWynUDuCdX2UKGgGR0BjTGafBeolaAdN6ANoCEdAlRoDdDYywnV9lChoBkdAUqFB5X2du2gHS+JoCEdAlTTNFvybx3V9lChoBkdAYP9n7pFCs2gHTegDaAhHQJU84k9lmOF1fZQoaAZHQFzdEFnqVyFoB03oA2gIR0CVPvO0b961dX2UKGgGR0BBQ61Cw8nvaAdNQAFoCEdAlUIW87IT5HV9lChoBkdAZisvr4WUKWgHTegDaAhHQJVHNG2Culp1fZQoaAZHQGBQhPbfxc5oB03oA2gIR0CVSKOnl4kedX2UKGgGR0BxiYybhFVlaAdNQwNoCEdAlUxD7l7tzHV9lChoBkdAV0e96C17Y2gHTegDaAhHQJVZBPxhDw91fZQoaAZHwCunVbzK9wpoB00aAWgIR0CVXPjI7vG7dX2UKGgGR0BeSDGLk0aZaAdN6ANoCEdAlWDcGgSOBHV9lChoBkdAYsZN8E3bVWgHTegDaAhHQJVi6gJ1JUZ1fZQoaAZHQGEomLk0aZRoB03oA2gIR0CVY6D9wWFfdX2UKGgGR0BoAusDGLk0aAdN6ANoCEdAlWwvQBxPwnV9lChoBkdAZmbT5O8CgmgHTegDaAhHQJVtiZ8a4tp1fZQoaAZHQGRy39rGipNoB03oA2gIR0CVb93H7xd6dX2UKGgGR0BiKeqNp/PPaAdN6ANoCEdAlXDTfvWpZXV9lChoBkdAX2AC1Z1V52gHTegDaAhHQJV59ON5t3x1fZQoaAZHQHBzBoVVPvdoB01IAWgIR0CVe9ERaouPdX2UKGgGR0BKfFVT72tdaAdNBQFoCEdAlX68Jlar3nV9lChoBkdAb9K1/lQuVWgHTc8DaAhHQJWB2j9GZu11fZQoaAZHQG65KmTC+DhoB029AmgIR0CVjSpXIU8FdX2UKGgGR0BvP7Fjurp8aAdNKAJoCEdAlY59gfEGaHV9lChoBkdAY3SCsfaHsWgHTegDaAhHQJWSg6cRUWF1fZQoaAZHQHC/Bo24usdoB01JA2gIR0CVkpnFo+OfdX2UKGgGR0BgReGEf1YhaAdN6ANoCEdAlZQpC0F8onV9lChoBkdARm9upCKJmGgHTegDaAhHQJWWtsANoal1fZQoaAZHQHCSvi97F85oB02NAmgIR0CVpJLXtjTbdX2UKGgGR0BxQKmtQsPKaAdNSAFoCEdAlbPmkadc0XV9lChoBkdAYd90vGp++mgHTegDaAhHQJW12TV2A5J1fZQoaAZHQGBMjZL7GedoB03oA2gIR0CVukUd7v5QdX2UKGgGR0BjTjFZPl+3aAdN6ANoCEdAlbrTBZZB9nV9lChoBkdAcN0m8/UvwmgHTXUCaAhHQJW8Ox1PnCB1fZQoaAZHQGVuLZJ04ipoB03oA2gIR0CVw5RChN/OdX2UKGgGR0Bg55GhEjPfaAdN6ANoCEdAlcSYzBRAKXV9lChoBkdAa2F9VFQVK2gHTZQDaAhHQJXIN/smfGx1fZQoaAZHQCP67f51vEVoB00SAWgIR0CVzzmuTzNEdX2UKGgGR0Bh5C+36Q/5aAdN6ANoCEdAlc/Ff7aZhXV9lChoBkdAY1EpNKyv92gHTegDaAhHQJXStxeb/fh1fZQoaAZHQHDrSiqQzUJoB03HA2gIR0CV2JqKgqVhdX2UKGgGR0BefzU/fO2RaAdN6ANoCEdAldm1inYQKHV9lChoBkdAbuAA3kxREWgHTbIDaAhHQJXtB/ZuhsZ1fZQoaAZHQHDxbMTviLloB00GAmgIR0CV7qIxgy/LdX2UKGgGR0BhfgI0IkZ8aAdN6ANoCEdAle7gWznienV9lChoBkdAZn4JhOP/72gHTegDaAhHQJXu9nCfpUx1fZQoaAZHQFJmpnYg7o1oB0v6aAhHQJXwcc94eLh1fZQoaAZHQHGmEhePaL5oB03FAWgIR0CV8hwCr92pdX2UKGgGR0Bv4HbAUL2IaAdNQAJoCEdAlfJBQSBbwHV9lChoBkdAQJ6D9Oymh2gHTSsBaAhHQJXzaso2GZh1fZQoaAZHQGucUHpr1uloB020AmgIR0CV86gTh5xBdX2UKGgGR0At3S2phnanaAdNCQFoCEdAlfgK3/givHV9lChoBkdAY0zR5TqB3GgHTegDaAhHQJX7D26ClJp1fZQoaAZHQHAp/7rLQoloB02vAWgIR0CV/HjyFwkxdX2UKGgGR0BsyKU/wAlwaAdNnwFoCEdAlf+PHDJlrnV9lChoBkdAbPQwgTyrgmgHTYkCaAhHQJX/6aKDTSd1fZQoaAZHQGEo0MXrMTxoB03oA2gIR0CWBdC/47A+dX2UKGgGR0Bt5H8baRISaAdNfANoCEdAlgvWY0EX+HV9lChoBkdAb4IVJL/S6WgHTbABaAhHQJYX/t5UtI11fZQoaAZHQGxXpM6BAfNoB039AmgIR0CWIgjBVMmGdX2UKGgGR0Bv8esYEW69aAdN4QFoCEdAliVR4t6HCXV9lChoBkdAbpVSm65G0GgHTcwCaAhHQJYlnNpudf91fZQoaAZHQHD7IQarFOxoB02ZAWgIR0CWKFYwIt17dX2UKGgGR0BwIzYVZcLSaAdNSgJoCEdAlimqhpQDWHV9lChoBkdAbZ7nYg7o0WgHTbQCaAhHQJYrUNwzch11fZQoaAZHQGvZ8ophF3JoB017A2gIR0CWOIscyWRjdX2UKGgGR0Bk6EmD15B1aAdN6ANoCEdAljm6e5Fw1nV9lChoBkdAZmQNrj5sTGgHTegDaAhHQJY7C68QI2R1fZQoaAZHQGRoJkGzKLdoB03oA2gIR0CWO1nE2pAEdX2UKGgGR0BwT0JHAh0RaAdN/QFoCEdAljxpBw++unV9lChoBkdAZIwl/pdKNGgHTegDaAhHQJY80mqo60Z1fZQoaAZHQGdAEvCdjG1oB03oA2gIR0CWPlgDRtxddX2UKGgGR0Bl2VTrE9+xaAdN6ANoCEdAlj/0YO2AoXV9lChoBkdAb36RaHKwIWgHTZMBaAhHQJZEX9YOlO51fZQoaAZHQG/z2Gyon8doB01lAWgIR0CWRX1gpjMFdX2UKGgGR0BudnGEPDpDaAdNDgJoCEdAlkW717IDHXV9lChoBkdAbWdw7T2FnWgHTakBaAhHQJZHdAcDKYB1fZQoaAZHQGwMKvmozepoB02iA2gIR0CWSMeNDMNddX2UKGgGR0ByT62TgVGkaAdNAgFoCEdAlkkR8lXzUnV9lChoBkdAM9XyVfNRnGgHTQoBaAhHQJZJO8Hv+fh1fZQoaAZHQEHouU2UB4loB00lAWgIR0CWSWFHavicdX2UKGgGR0Bw5VX7tRekaAdNkAFoCEdAlkmkRjBl+XV9lChoBkdAbu4AWBSUDGgHTYcBaAhHQJZM5A1Nxlx1fZQoaAZHQG4Aqx9oexRoB02IAWgIR0CWUOnZkCmudX2UKGgGR0Bym2taIN3GaAdNhAJoCEdAllIdcGC7LHV9lChoBkdAcLLNLlFMI2gHTTcBaAhHQJZZ0g4ffXR1fZQoaAZHQHBliTUy57RoB01kAWgIR0CWWshtLteEdX2UKGgGR0BwgmjWTX8PaAdNywJoCEdAllvo3zcynHV9lChoBkdAcAiUvf0mMWgHTdoBaAhHQJZcKJl8PWh1fZQoaAZHQGwtI60Y0l9oB02XAWgIR0CWXPqz7di2dX2UKGgGR0Bws+1XvH94aAdNRQFoCEdAll4x8hLXc3V9lChoBkdAcbCCEpRXOmgHTdcBaAhHQJZpY8V58jR1fZQoaAZHQHI1lfVqeshoB02cAWgIR0CWarn+AEt/dX2UKGgGR0BzCmAAhje9aAdNewJoCEdAlnO61LJ0XHV9lChoBkdAcY9PBzmwJWgHTb8CaAhHQJZz7duYQat1fZQoaAZHQHIYdB0IToNoB01mAWgIR0CWdDdD6WPcdX2UKGgGR0BxTNwsGxD9aAdN8QFoCEdAlncw5zYEn3V9lChoBkdAcTmOzY287WgHTRQCaAhHQJZ4CSTyJ9B1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}