--- base_model: - google/gemma-2-2b-it - Kukedlc/Gemma-2-2B-Spanish-1.0 tags: - merge - mergekit - lazymergekit - google/gemma-2-2b-it - Kukedlc/Gemma-2-2B-Spanish-1.0 - autoquant - gguf --- # Kukedlc/NeuralGemma2-2b-Spanish NeuralGemma-2B-Slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) * [Kukedlc/Gemma-2-2B-Spanish-1.0](https://huggingface.co/Kukedlc/Gemma-2-2B-Spanish-1.0) ## 🧩 Configuration ```yaml models: - model: google/gemma-2-2b # No parameters necessary for base model - model: google/gemma-2-2b-it parameters: density: 0.55 weight: 0.6 - model: Kukedlc/Gemma-2-2B-Spanish-1.0 parameters: density: 0.55 weight: 0.4 merge_method: dare_ties base_model: google/gemma-2-2b parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralGemma-2B-Slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```