File size: 2,352 Bytes
d273c1d 7843ba0 d273c1d c924c61 5714f5b d273c1d c924c61 d273c1d c924c61 4a2d8bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model:
- Qwen/Qwen2.5-1.5B-Instruct
- Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO
tags:
- merge
- mergekit
- lazymergekit
- Qwen/Qwen2.5-1.5B-Instruct
- Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO
license: apache-2.0
datasets:
- multilingual/orca_dpo_pairs
- Kukedlc/Big-Spanish-1.2M
language:
- es
---
# NeuralQwen-2.5-1.5B-Spanish
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/bQMhMwK-xDvHMIbDFpxN5.png)
NeuralQwen-2.5-1.5B-Spanish is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)
* [Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO](https://huggingface.co/Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO)
## 🧩 Configuration
```yaml
models:
- model: Qwen/Qwen2.5-1.5B
# No parameters necessary for base model
- model: Qwen/Qwen2.5-1.5B-Instruct
parameters:
density: 0.66
weight: 0.6
- model: Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO
parameters:
density: 0.44
weight: 0.4
merge_method: dare_ties
base_model: Qwen/Qwen2.5-1.5B
parameters:
int8_mask: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralQwen-2.5-1.5B-Spanish"
messages = [{"role": "system", "content": "Eres un asistente de pensamiento logico que piensa paso a paso, por cada pregunta que te hagan deberes comprobar la respuesta por 3 metodos diferentes."},
{"role": "user", "content": "Cuantas letras 'r' tiene la palabra strawberry?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/Tu9FV0dQJXz-mlriKNqdE.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/sg8c5HlcbJ89q5MknX-Gf.png)
|