--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55625 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3006 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 22 | 1.8368 | 0.425 | | No log | 2.0 | 44 | 1.6260 | 0.375 | | No log | 3.0 | 66 | 1.4368 | 0.5 | | No log | 4.0 | 88 | 1.3790 | 0.5062 | | No log | 5.0 | 110 | 1.3382 | 0.5125 | | No log | 6.0 | 132 | 1.3136 | 0.4938 | | No log | 7.0 | 154 | 1.2557 | 0.4938 | | No log | 8.0 | 176 | 1.2959 | 0.5 | | No log | 9.0 | 198 | 1.2810 | 0.5125 | | No log | 10.0 | 220 | 1.2689 | 0.5563 | | No log | 11.0 | 242 | 1.3548 | 0.4875 | | No log | 12.0 | 264 | 1.2026 | 0.5563 | | No log | 13.0 | 286 | 1.2096 | 0.575 | | No log | 14.0 | 308 | 1.3175 | 0.525 | | No log | 15.0 | 330 | 1.3121 | 0.5312 | | No log | 16.0 | 352 | 1.4260 | 0.5312 | | No log | 17.0 | 374 | 1.4547 | 0.5062 | | No log | 18.0 | 396 | 1.3529 | 0.525 | | No log | 19.0 | 418 | 1.2386 | 0.5938 | | No log | 20.0 | 440 | 1.3504 | 0.5375 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3