metadata
base_model:
- udkai/Turdus
- flemmingmiguel/MBX-7B
tags:
- merge
- mergekit
- lazymergekit
- udkai/Turdus
- flemmingmiguel/MBX-7B
Hemanth-llm
Hemanth-llm is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: udkai/Turdus
layer_range: [0, 32]
- model: flemmingmiguel/MBX-7B
layer_range: [0, 32]
merge_method: slerp
base_model: udkai/Turdus
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
# Load tokenizer and model
model = "Kumar955/Hemanth-llm"
tokenizer = AutoTokenizer.from_pretrained(model)
# Define the messages from the conversation
messages = [{"role": "user", "content": "What is a large language model?"}]
# Define the chat template for formatting the conversation
chat_template = """<s><|user|>{{ user_message }}<|assistant|>"""
# Extract the user message content
user_message = messages[0]["content"]
# Format the prompt using the chat template
prompt = chat_template.replace("{{ user_message }}", user_message)
# Load the pipeline with the specified model
pipeline = pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
# Generate output with the model
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
# Print the generated response
print(outputs[0]["generated_text"])