MaiDD commited on
Commit
73913dc
1 Parent(s): 7df54c7

Add SetFit model

Browse files
Files changed (3) hide show
  1. README.md +253 -214
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -8,12 +8,11 @@ tags:
8
  metrics:
9
  - accuracy
10
  widget:
11
- - text: 多要素認証エンジンである「LOCKED」と、セキュリティコンサルティングを通じて、国内企業のゼロトラスト対応を支援しているスタートアップ。
12
- - text: Hotel rooms on the wheelsをコンセプトにした、自社生産のキャンピングカーレンタルサービスを展開するスタートアップ。
13
- - text: バイオ新薬事業やバイオシミラー事業などバイオに関わる研究開発を行う企業。2021年7月にジーンテクノサイエンスからキッズウェル・バイオに社名変更をしている。
14
- - text: 業務用冷凍食品の企画・開発・販売を行い、自社商品の調理方法などを公開する企業。
15
- - text: がん治療機器「集束超音波(HIFU)治療装置」の開発を行う東北大学発のスタートアップ。「集束超音波」は、超音波を一点に集中させてがん組織に照射し、加熱効果などで切らずに治療する方法。放射線被曝が無いことから繰り返し治療ができ、がんに対する次世代治療として期待されている。2022年12月には、ニッセイ・キャピタル、野村スパークス・インベストメント、大和企業投資、りそなキャピタル、Carbon
16
- Ventures、QRインベストメント、JA三井リース、ファストトラックイニシアティブ、SBIインベストメント、三菱UFJキャピタル、FFGベンチャービジネスパートナーズ、肥銀キャピタルを引受先とする総額23億5,000万円の資金調達を発表した。今後は、膵癌の国内治験および海外展開を含めた事業拡大に充当し、同社のビジョンである“音響工学(超音波)でがん患者さんに新たな未来をもたらす”を1日でも早く実現することを目指す。
17
  pipeline_tag: text-classification
18
  inference: false
19
  model-index:
@@ -28,7 +27,7 @@ model-index:
28
  split: test
29
  metrics:
30
  - type: accuracy
31
- value: 0.7902097902097902
32
  name: Accuracy
33
  ---
34
 
@@ -64,7 +63,7 @@ The model has been trained using an efficient few-shot learning technique that i
64
  ### Metrics
65
  | Label | Accuracy |
66
  |:--------|:---------|
67
- | **all** | 0.7902 |
68
 
69
  ## Uses
70
 
@@ -84,7 +83,7 @@ from setfit import SetFitModel
84
  # Download from the 🤗 Hub
85
  model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
86
  # Run inference
87
- preds = model("業務用冷凍食品の企画・開発・販売を行い、自社商品の調理方法などを公開する企業。")
88
  ```
89
 
90
  <!--
@@ -116,14 +115,14 @@ preds = model("業務用冷凍食品の企画・開発・販売を行い、自
116
  ### Training Set Metrics
117
  | Training set | Min | Median | Max |
118
  |:-------------|:----|:-------|:----|
119
- | Word count | 1 | 1.8981 | 57 |
120
 
121
  ### Training Hyperparameters
122
- - batch_size: (8, 8)
123
  - num_epochs: (35, 35)
124
  - max_steps: -1
125
  - sampling_strategy: oversampling
126
- - num_iterations: 2
127
  - body_learning_rate: (2e-05, 2e-05)
128
  - head_learning_rate: 2e-05
129
  - loss: CosineSimilarityLoss
@@ -137,208 +136,248 @@ preds = model("業務用冷凍食品の企画・開発・販売を行い、自
137
  - load_best_model_at_end: False
138
 
139
  ### Training Results
140
- | Epoch | Step | Training Loss | Validation Loss |
141
- |:-------:|:----:|:-------------:|:---------------:|
142
- | 0.0035 | 1 | 0.3068 | - |
143
- | 0.1754 | 50 | 0.2708 | - |
144
- | 0.3509 | 100 | 0.2253 | - |
145
- | 0.5263 | 150 | 0.2705 | - |
146
- | 0.7018 | 200 | 0.1665 | - |
147
- | 0.8772 | 250 | 0.2609 | - |
148
- | 1.0526 | 300 | 0.2681 | - |
149
- | 1.2281 | 350 | 0.2614 | - |
150
- | 1.4035 | 400 | 0.2151 | - |
151
- | 1.5789 | 450 | 0.1952 | - |
152
- | 1.7544 | 500 | 0.2275 | - |
153
- | 1.9298 | 550 | 0.3111 | - |
154
- | 2.1053 | 600 | 0.1036 | - |
155
- | 2.2807 | 650 | 0.1038 | - |
156
- | 2.4561 | 700 | 0.0081 | - |
157
- | 2.6316 | 750 | 0.0906 | - |
158
- | 2.8070 | 800 | 0.0002 | - |
159
- | 2.9825 | 850 | 0.0928 | - |
160
- | 3.1579 | 900 | 0.0004 | - |
161
- | 3.3333 | 950 | 0.0011 | - |
162
- | 3.5088 | 1000 | 0.0013 | - |
163
- | 3.6842 | 1050 | 0.0004 | - |
164
- | 3.8596 | 1100 | 0.0012 | - |
165
- | 4.0351 | 1150 | 0.0002 | - |
166
- | 4.2105 | 1200 | 0.0004 | - |
167
- | 4.3860 | 1250 | 0.0003 | - |
168
- | 4.5614 | 1300 | 0.0 | - |
169
- | 4.7368 | 1350 | 0.0001 | - |
170
- | 4.9123 | 1400 | 0.0002 | - |
171
- | 5.0877 | 1450 | 0.0 | - |
172
- | 5.2632 | 1500 | 0.0002 | - |
173
- | 5.4386 | 1550 | 0.0 | - |
174
- | 5.6140 | 1600 | 0.0 | - |
175
- | 5.7895 | 1650 | 0.0 | - |
176
- | 5.9649 | 1700 | 0.1017 | - |
177
- | 6.1404 | 1750 | 0.0012 | - |
178
- | 6.3158 | 1800 | 0.0 | - |
179
- | 6.4912 | 1850 | 0.0001 | - |
180
- | 6.6667 | 1900 | 0.0 | - |
181
- | 6.8421 | 1950 | 0.0003 | - |
182
- | 7.0175 | 2000 | 0.0 | - |
183
- | 7.1930 | 2050 | 0.0 | - |
184
- | 7.3684 | 2100 | 0.0 | - |
185
- | 7.5439 | 2150 | 0.0 | - |
186
- | 7.7193 | 2200 | 0.0 | - |
187
- | 7.8947 | 2250 | 0.0 | - |
188
- | 8.0702 | 2300 | 0.0 | - |
189
- | 8.2456 | 2350 | 0.0 | - |
190
- | 8.4211 | 2400 | 0.0019 | - |
191
- | 8.5965 | 2450 | 0.0017 | - |
192
- | 8.7719 | 2500 | 0.0 | - |
193
- | 8.9474 | 2550 | 0.0034 | - |
194
- | 9.1228 | 2600 | 0.0 | - |
195
- | 9.2982 | 2650 | 0.0 | - |
196
- | 9.4737 | 2700 | 0.0 | - |
197
- | 9.6491 | 2750 | 0.0 | - |
198
- | 9.8246 | 2800 | 0.0 | - |
199
- | 10.0 | 2850 | 0.0 | - |
200
- | 10.1754 | 2900 | 0.0 | - |
201
- | 10.3509 | 2950 | 0.0 | - |
202
- | 10.5263 | 3000 | 0.0 | - |
203
- | 10.7018 | 3050 | 0.0 | - |
204
- | 10.8772 | 3100 | 0.0001 | - |
205
- | 11.0526 | 3150 | 0.0 | - |
206
- | 11.2281 | 3200 | 0.0 | - |
207
- | 11.4035 | 3250 | 0.0 | - |
208
- | 11.5789 | 3300 | 0.0 | - |
209
- | 11.7544 | 3350 | 0.0 | - |
210
- | 11.9298 | 3400 | 0.0 | - |
211
- | 12.1053 | 3450 | 0.0 | - |
212
- | 12.2807 | 3500 | 0.0 | - |
213
- | 12.4561 | 3550 | 0.0 | - |
214
- | 12.6316 | 3600 | 0.0 | - |
215
- | 12.8070 | 3650 | 0.0 | - |
216
- | 12.9825 | 3700 | 0.0 | - |
217
- | 13.1579 | 3750 | 0.0 | - |
218
- | 13.3333 | 3800 | 0.0 | - |
219
- | 13.5088 | 3850 | 0.0 | - |
220
- | 13.6842 | 3900 | 0.0 | - |
221
- | 13.8596 | 3950 | 0.0 | - |
222
- | 14.0351 | 4000 | 0.0 | - |
223
- | 14.2105 | 4050 | 0.0 | - |
224
- | 14.3860 | 4100 | 0.0 | - |
225
- | 14.5614 | 4150 | 0.0 | - |
226
- | 14.7368 | 4200 | 0.0 | - |
227
- | 14.9123 | 4250 | 0.0 | - |
228
- | 15.0877 | 4300 | 0.0 | - |
229
- | 15.2632 | 4350 | 0.0 | - |
230
- | 15.4386 | 4400 | 0.0 | - |
231
- | 15.6140 | 4450 | 0.0 | - |
232
- | 15.7895 | 4500 | 0.0 | - |
233
- | 15.9649 | 4550 | 0.1016 | - |
234
- | 16.1404 | 4600 | 0.1214 | - |
235
- | 16.3158 | 4650 | 0.0 | - |
236
- | 16.4912 | 4700 | 0.0 | - |
237
- | 16.6667 | 4750 | 0.0 | - |
238
- | 16.8421 | 4800 | 0.0 | - |
239
- | 17.0175 | 4850 | 0.0 | - |
240
- | 17.1930 | 4900 | 0.0 | - |
241
- | 17.3684 | 4950 | 0.0 | - |
242
- | 17.5439 | 5000 | 0.0 | - |
243
- | 17.7193 | 5050 | 0.0 | - |
244
- | 17.8947 | 5100 | 0.0 | - |
245
- | 18.0702 | 5150 | 0.0 | - |
246
- | 18.2456 | 5200 | 0.0 | - |
247
- | 18.4211 | 5250 | 0.0 | - |
248
- | 18.5965 | 5300 | 0.0 | - |
249
- | 18.7719 | 5350 | 0.0 | - |
250
- | 18.9474 | 5400 | 0.0 | - |
251
- | 19.1228 | 5450 | 0.0 | - |
252
- | 19.2982 | 5500 | 0.0001 | - |
253
- | 19.4737 | 5550 | 0.0 | - |
254
- | 19.6491 | 5600 | 0.0001 | - |
255
- | 19.8246 | 5650 | 0.0174 | - |
256
- | 20.0 | 5700 | 0.0 | - |
257
- | 20.1754 | 5750 | 0.0 | - |
258
- | 20.3509 | 5800 | 0.0 | - |
259
- | 20.5263 | 5850 | 0.0 | - |
260
- | 20.7018 | 5900 | 0.0 | - |
261
- | 20.8772 | 5950 | 0.0 | - |
262
- | 21.0526 | 6000 | 0.0 | - |
263
- | 21.2281 | 6050 | 0.0 | - |
264
- | 21.4035 | 6100 | 0.0 | - |
265
- | 21.5789 | 6150 | 0.0 | - |
266
- | 21.7544 | 6200 | 0.0 | - |
267
- | 21.9298 | 6250 | 0.0 | - |
268
- | 22.1053 | 6300 | 0.0 | - |
269
- | 22.2807 | 6350 | 0.0 | - |
270
- | 22.4561 | 6400 | 0.0 | - |
271
- | 22.6316 | 6450 | 0.0 | - |
272
- | 22.8070 | 6500 | 0.0 | - |
273
- | 22.9825 | 6550 | 0.0 | - |
274
- | 23.1579 | 6600 | 0.0 | - |
275
- | 23.3333 | 6650 | 0.0 | - |
276
- | 23.5088 | 6700 | 0.0 | - |
277
- | 23.6842 | 6750 | 0.0 | - |
278
- | 23.8596 | 6800 | 0.0 | - |
279
- | 24.0351 | 6850 | 0.0 | - |
280
- | 24.2105 | 6900 | 0.0 | - |
281
- | 24.3860 | 6950 | 0.0 | - |
282
- | 24.5614 | 7000 | 0.0 | - |
283
- | 24.7368 | 7050 | 0.0 | - |
284
- | 24.9123 | 7100 | 0.0 | - |
285
- | 25.0877 | 7150 | 0.0 | - |
286
- | 25.2632 | 7200 | 0.0 | - |
287
- | 25.4386 | 7250 | 0.0816 | - |
288
- | 25.6140 | 7300 | 0.0005 | - |
289
- | 25.7895 | 7350 | 0.0 | - |
290
- | 25.9649 | 7400 | 0.0001 | - |
291
- | 26.1404 | 7450 | 0.0001 | - |
292
- | 26.3158 | 7500 | 0.0 | - |
293
- | 26.4912 | 7550 | 0.0 | - |
294
- | 26.6667 | 7600 | 0.0 | - |
295
- | 26.8421 | 7650 | 0.0 | - |
296
- | 27.0175 | 7700 | 0.0 | - |
297
- | 27.1930 | 7750 | 0.0 | - |
298
- | 27.3684 | 7800 | 0.0 | - |
299
- | 27.5439 | 7850 | 0.0 | - |
300
- | 27.7193 | 7900 | 0.0 | - |
301
- | 27.8947 | 7950 | 0.0 | - |
302
- | 28.0702 | 8000 | 0.0 | - |
303
- | 28.2456 | 8050 | 0.0 | - |
304
- | 28.4211 | 8100 | 0.0 | - |
305
- | 28.5965 | 8150 | 0.0 | - |
306
- | 28.7719 | 8200 | 0.0 | - |
307
- | 28.9474 | 8250 | 0.0 | - |
308
- | 29.1228 | 8300 | 0.0 | - |
309
- | 29.2982 | 8350 | 0.0 | - |
310
- | 29.4737 | 8400 | 0.0 | - |
311
- | 29.6491 | 8450 | 0.0 | - |
312
- | 29.8246 | 8500 | 0.0 | - |
313
- | 30.0 | 8550 | 0.0 | - |
314
- | 30.1754 | 8600 | 0.0 | - |
315
- | 30.3509 | 8650 | 0.0 | - |
316
- | 30.5263 | 8700 | 0.0 | - |
317
- | 30.7018 | 8750 | 0.0 | - |
318
- | 30.8772 | 8800 | 0.0 | - |
319
- | 31.0526 | 8850 | 0.0 | - |
320
- | 31.2281 | 8900 | 0.0 | - |
321
- | 31.4035 | 8950 | 0.0 | - |
322
- | 31.5789 | 9000 | 0.0 | - |
323
- | 31.7544 | 9050 | 0.0 | - |
324
- | 31.9298 | 9100 | 0.0 | - |
325
- | 32.1053 | 9150 | 0.0 | - |
326
- | 32.2807 | 9200 | 0.0 | - |
327
- | 32.4561 | 9250 | 0.0 | - |
328
- | 32.6316 | 9300 | 0.0 | - |
329
- | 32.8070 | 9350 | 0.0 | - |
330
- | 32.9825 | 9400 | 0.0 | - |
331
- | 33.1579 | 9450 | 0.0 | - |
332
- | 33.3333 | 9500 | 0.0 | - |
333
- | 33.5088 | 9550 | 0.0 | - |
334
- | 33.6842 | 9600 | 0.0 | - |
335
- | 33.8596 | 9650 | 0.0 | - |
336
- | 34.0351 | 9700 | 0.0 | - |
337
- | 34.2105 | 9750 | 0.0 | - |
338
- | 34.3860 | 9800 | 0.0 | - |
339
- | 34.5614 | 9850 | 0.0 | - |
340
- | 34.7368 | 9900 | 0.0 | - |
341
- | 34.9123 | 9950 | 0.0 | - |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
 
343
  ### Framework Versions
344
  - Python: 3.10.12
 
8
  metrics:
9
  - accuracy
10
  widget:
11
+ - text: スマホやタブレットPC、Oculus GOやVIVE、Apple Watchなど新しいデバイス向けアプリの企画・開発を行うスタートアップ。
12
+ - text: ベンチャー企業へのハンズオン投資などを行うベンチャーキャピタル。
13
+ - text: GoogleカレンダーやZoomと連携してスケジュール調整を自動化する日程調整ツール「Jicoo」を開発、提供するスタートアップ
14
+ - text: 住まい探しに特化したウェブサイト「TOKYO APARTMENTS」を提供する企業。
15
+ - text: 医療機器、産業機器の研究開発・製造販売を行う企業。
 
16
  pipeline_tag: text-classification
17
  inference: false
18
  model-index:
 
27
  split: test
28
  metrics:
29
  - type: accuracy
30
+ value: 0.7272727272727273
31
  name: Accuracy
32
  ---
33
 
 
63
  ### Metrics
64
  | Label | Accuracy |
65
  |:--------|:---------|
66
+ | **all** | 0.7273 |
67
 
68
  ## Uses
69
 
 
83
  # Download from the 🤗 Hub
84
  model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
85
  # Run inference
86
+ preds = model("医療機器、産業機器の研究開発・製造販売を行う企業。")
87
  ```
88
 
89
  <!--
 
115
  ### Training Set Metrics
116
  | Training set | Min | Median | Max |
117
  |:-------------|:----|:-------|:----|
118
+ | Word count | 1 | 1.9824 | 57 |
119
 
120
  ### Training Hyperparameters
121
+ - batch_size: (10, 10)
122
  - num_epochs: (35, 35)
123
  - max_steps: -1
124
  - sampling_strategy: oversampling
125
+ - num_iterations: 3
126
  - body_learning_rate: (2e-05, 2e-05)
127
  - head_learning_rate: 2e-05
128
  - loss: CosineSimilarityLoss
 
136
  - load_best_model_at_end: False
137
 
138
  ### Training Results
139
+ | Epoch | Step | Training Loss | Validation Loss |
140
+ |:-------:|:-----:|:-------------:|:---------------:|
141
+ | 0.0029 | 1 | 0.2602 | - |
142
+ | 0.1462 | 50 | 0.25 | - |
143
+ | 0.2924 | 100 | 0.1712 | - |
144
+ | 0.4386 | 150 | 0.2671 | - |
145
+ | 0.5848 | 200 | 0.2288 | - |
146
+ | 0.7310 | 250 | 0.2253 | - |
147
+ | 0.8772 | 300 | 0.2675 | - |
148
+ | 1.0234 | 350 | 0.1204 | - |
149
+ | 1.1696 | 400 | 0.1185 | - |
150
+ | 1.3158 | 450 | 0.1884 | - |
151
+ | 1.4620 | 500 | 0.2311 | - |
152
+ | 1.6082 | 550 | 0.0659 | - |
153
+ | 1.7544 | 600 | 0.1719 | - |
154
+ | 1.9006 | 650 | 0.0094 | - |
155
+ | 2.0468 | 700 | 0.0237 | - |
156
+ | 2.1930 | 750 | 0.0007 | - |
157
+ | 2.3392 | 800 | 0.0021 | - |
158
+ | 2.4854 | 850 | 0.0013 | - |
159
+ | 2.6316 | 900 | 0.1887 | - |
160
+ | 2.7778 | 950 | 0.0004 | - |
161
+ | 2.9240 | 1000 | 0.0001 | - |
162
+ | 3.0702 | 1050 | 0.0003 | - |
163
+ | 3.2164 | 1100 | 0.0764 | - |
164
+ | 3.3626 | 1150 | 0.0025 | - |
165
+ | 3.5088 | 1200 | 0.0001 | - |
166
+ | 3.6550 | 1250 | 0.0001 | - |
167
+ | 3.8012 | 1300 | 0.0001 | - |
168
+ | 3.9474 | 1350 | 0.0001 | - |
169
+ | 4.0936 | 1400 | 0.0 | - |
170
+ | 4.2398 | 1450 | 0.0001 | - |
171
+ | 4.3860 | 1500 | 0.0001 | - |
172
+ | 4.5322 | 1550 | 0.0 | - |
173
+ | 4.6784 | 1600 | 0.0 | - |
174
+ | 4.8246 | 1650 | 0.0 | - |
175
+ | 4.9708 | 1700 | 0.0 | - |
176
+ | 5.1170 | 1750 | 0.0001 | - |
177
+ | 5.2632 | 1800 | 0.0 | - |
178
+ | 5.4094 | 1850 | 0.0 | - |
179
+ | 5.5556 | 1900 | 0.0 | - |
180
+ | 5.7018 | 1950 | 0.0883 | - |
181
+ | 5.8480 | 2000 | 0.0 | - |
182
+ | 5.9942 | 2050 | 0.0 | - |
183
+ | 6.1404 | 2100 | 0.0 | - |
184
+ | 6.2865 | 2150 | 0.0 | - |
185
+ | 6.4327 | 2200 | 0.0 | - |
186
+ | 6.5789 | 2250 | 0.0 | - |
187
+ | 6.7251 | 2300 | 0.0 | - |
188
+ | 6.8713 | 2350 | 0.0 | - |
189
+ | 7.0175 | 2400 | 0.0 | - |
190
+ | 7.1637 | 2450 | 0.0 | - |
191
+ | 7.3099 | 2500 | 0.0 | - |
192
+ | 7.4561 | 2550 | 0.0 | - |
193
+ | 7.6023 | 2600 | 0.0 | - |
194
+ | 7.7485 | 2650 | 0.0 | - |
195
+ | 7.8947 | 2700 | 0.0 | - |
196
+ | 8.0409 | 2750 | 0.0 | - |
197
+ | 8.1871 | 2800 | 0.0 | - |
198
+ | 8.3333 | 2850 | 0.0 | - |
199
+ | 8.4795 | 2900 | 0.0 | - |
200
+ | 8.6257 | 2950 | 0.0 | - |
201
+ | 8.7719 | 3000 | 0.0 | - |
202
+ | 8.9181 | 3050 | 0.0 | - |
203
+ | 9.0643 | 3100 | 0.0 | - |
204
+ | 9.2105 | 3150 | 0.0 | - |
205
+ | 9.3567 | 3200 | 0.0 | - |
206
+ | 9.5029 | 3250 | 0.0618 | - |
207
+ | 9.6491 | 3300 | 0.3522 | - |
208
+ | 9.7953 | 3350 | 0.0051 | - |
209
+ | 9.9415 | 3400 | 0.0002 | - |
210
+ | 10.0877 | 3450 | 0.0018 | - |
211
+ | 10.2339 | 3500 | 0.0027 | - |
212
+ | 10.3801 | 3550 | 0.0001 | - |
213
+ | 10.5263 | 3600 | 0.0 | - |
214
+ | 10.6725 | 3650 | 0.0 | - |
215
+ | 10.8187 | 3700 | 0.0001 | - |
216
+ | 10.9649 | 3750 | 0.0 | - |
217
+ | 11.1111 | 3800 | 0.0 | - |
218
+ | 11.2573 | 3850 | 0.0001 | - |
219
+ | 11.4035 | 3900 | 0.0001 | - |
220
+ | 11.5497 | 3950 | 0.0 | - |
221
+ | 11.6959 | 4000 | 0.0 | - |
222
+ | 11.8421 | 4050 | 0.0 | - |
223
+ | 11.9883 | 4100 | 0.0 | - |
224
+ | 12.1345 | 4150 | 0.0 | - |
225
+ | 12.2807 | 4200 | 0.0001 | - |
226
+ | 12.4269 | 4250 | 0.0 | - |
227
+ | 12.5731 | 4300 | 0.0 | - |
228
+ | 12.7193 | 4350 | 0.0003 | - |
229
+ | 12.8655 | 4400 | 0.0 | - |
230
+ | 13.0117 | 4450 | 0.0 | - |
231
+ | 13.1579 | 4500 | 0.0 | - |
232
+ | 13.3041 | 4550 | 0.0 | - |
233
+ | 13.4503 | 4600 | 0.0 | - |
234
+ | 13.5965 | 4650 | 0.0 | - |
235
+ | 13.7427 | 4700 | 0.0 | - |
236
+ | 13.8889 | 4750 | 0.0 | - |
237
+ | 14.0351 | 4800 | 0.0 | - |
238
+ | 14.1813 | 4850 | 0.0 | - |
239
+ | 14.3275 | 4900 | 0.0 | - |
240
+ | 14.4737 | 4950 | 0.0 | - |
241
+ | 14.6199 | 5000 | 0.0 | - |
242
+ | 14.7661 | 5050 | 0.0 | - |
243
+ | 14.9123 | 5100 | 0.0 | - |
244
+ | 15.0585 | 5150 | 0.0 | - |
245
+ | 15.2047 | 5200 | 0.0 | - |
246
+ | 15.3509 | 5250 | 0.0 | - |
247
+ | 15.4971 | 5300 | 0.0 | - |
248
+ | 15.6433 | 5350 | 0.0 | - |
249
+ | 15.7895 | 5400 | 0.0 | - |
250
+ | 15.9357 | 5450 | 0.0 | - |
251
+ | 16.0819 | 5500 | 0.0 | - |
252
+ | 16.2281 | 5550 | 0.0 | - |
253
+ | 16.3743 | 5600 | 0.0 | - |
254
+ | 16.5205 | 5650 | 0.0 | - |
255
+ | 16.6667 | 5700 | 0.0 | - |
256
+ | 16.8129 | 5750 | 0.0 | - |
257
+ | 16.9591 | 5800 | 0.0 | - |
258
+ | 17.1053 | 5850 | 0.0 | - |
259
+ | 17.2515 | 5900 | 0.0 | - |
260
+ | 17.3977 | 5950 | 0.0 | - |
261
+ | 17.5439 | 6000 | 0.0 | - |
262
+ | 17.6901 | 6050 | 0.0 | - |
263
+ | 17.8363 | 6100 | 0.0 | - |
264
+ | 17.9825 | 6150 | 0.0 | - |
265
+ | 18.1287 | 6200 | 0.0 | - |
266
+ | 18.2749 | 6250 | 0.0 | - |
267
+ | 18.4211 | 6300 | 0.0 | - |
268
+ | 18.5673 | 6350 | 0.0 | - |
269
+ | 18.7135 | 6400 | 0.0 | - |
270
+ | 18.8596 | 6450 | 0.0 | - |
271
+ | 19.0058 | 6500 | 0.0 | - |
272
+ | 19.1520 | 6550 | 0.0 | - |
273
+ | 19.2982 | 6600 | 0.0 | - |
274
+ | 19.4444 | 6650 | 0.0 | - |
275
+ | 19.5906 | 6700 | 0.0 | - |
276
+ | 19.7368 | 6750 | 0.0 | - |
277
+ | 19.8830 | 6800 | 0.0 | - |
278
+ | 20.0292 | 6850 | 0.0 | - |
279
+ | 20.1754 | 6900 | 0.0 | - |
280
+ | 20.3216 | 6950 | 0.0 | - |
281
+ | 20.4678 | 7000 | 0.0 | - |
282
+ | 20.6140 | 7050 | 0.0 | - |
283
+ | 20.7602 | 7100 | 0.0 | - |
284
+ | 20.9064 | 7150 | 0.0 | - |
285
+ | 21.0526 | 7200 | 0.0 | - |
286
+ | 21.1988 | 7250 | 0.0 | - |
287
+ | 21.3450 | 7300 | 0.0 | - |
288
+ | 21.4912 | 7350 | 0.0 | - |
289
+ | 21.6374 | 7400 | 0.0 | - |
290
+ | 21.7836 | 7450 | 0.0 | - |
291
+ | 21.9298 | 7500 | 0.0 | - |
292
+ | 22.0760 | 7550 | 0.0 | - |
293
+ | 22.2222 | 7600 | 0.0 | - |
294
+ | 22.3684 | 7650 | 0.0 | - |
295
+ | 22.5146 | 7700 | 0.0 | - |
296
+ | 22.6608 | 7750 | 0.0 | - |
297
+ | 22.8070 | 7800 | 0.0 | - |
298
+ | 22.9532 | 7850 | 0.0 | - |
299
+ | 23.0994 | 7900 | 0.0 | - |
300
+ | 23.2456 | 7950 | 0.0 | - |
301
+ | 23.3918 | 8000 | 0.0 | - |
302
+ | 23.5380 | 8050 | 0.0 | - |
303
+ | 23.6842 | 8100 | 0.0 | - |
304
+ | 23.8304 | 8150 | 0.0 | - |
305
+ | 23.9766 | 8200 | 0.0 | - |
306
+ | 24.1228 | 8250 | 0.0858 | - |
307
+ | 24.2690 | 8300 | 0.0 | - |
308
+ | 24.4152 | 8350 | 0.0001 | - |
309
+ | 24.5614 | 8400 | 0.0 | - |
310
+ | 24.7076 | 8450 | 0.0005 | - |
311
+ | 24.8538 | 8500 | 0.0992 | - |
312
+ | 25.0 | 8550 | 0.0 | - |
313
+ | 25.1462 | 8600 | 0.0 | - |
314
+ | 25.2924 | 8650 | 0.0 | - |
315
+ | 25.4386 | 8700 | 0.0 | - |
316
+ | 25.5848 | 8750 | 0.0 | - |
317
+ | 25.7310 | 8800 | 0.0 | - |
318
+ | 25.8772 | 8850 | 0.0 | - |
319
+ | 26.0234 | 8900 | 0.0 | - |
320
+ | 26.1696 | 8950 | 0.0 | - |
321
+ | 26.3158 | 9000 | 0.0 | - |
322
+ | 26.4620 | 9050 | 0.0 | - |
323
+ | 26.6082 | 9100 | 0.0 | - |
324
+ | 26.7544 | 9150 | 0.0 | - |
325
+ | 26.9006 | 9200 | 0.0 | - |
326
+ | 27.0468 | 9250 | 0.0 | - |
327
+ | 27.1930 | 9300 | 0.0 | - |
328
+ | 27.3392 | 9350 | 0.0 | - |
329
+ | 27.4854 | 9400 | 0.0 | - |
330
+ | 27.6316 | 9450 | 0.0 | - |
331
+ | 27.7778 | 9500 | 0.0 | - |
332
+ | 27.9240 | 9550 | 0.0 | - |
333
+ | 28.0702 | 9600 | 0.0 | - |
334
+ | 28.2164 | 9650 | 0.0 | - |
335
+ | 28.3626 | 9700 | 0.0 | - |
336
+ | 28.5088 | 9750 | 0.0 | - |
337
+ | 28.6550 | 9800 | 0.0 | - |
338
+ | 28.8012 | 9850 | 0.0 | - |
339
+ | 28.9474 | 9900 | 0.0 | - |
340
+ | 29.0936 | 9950 | 0.0 | - |
341
+ | 29.2398 | 10000 | 0.0 | - |
342
+ | 29.3860 | 10050 | 0.0 | - |
343
+ | 29.5322 | 10100 | 0.0 | - |
344
+ | 29.6784 | 10150 | 0.0 | - |
345
+ | 29.8246 | 10200 | 0.0 | - |
346
+ | 29.9708 | 10250 | 0.0 | - |
347
+ | 30.1170 | 10300 | 0.0 | - |
348
+ | 30.2632 | 10350 | 0.0 | - |
349
+ | 30.4094 | 10400 | 0.0 | - |
350
+ | 30.5556 | 10450 | 0.0 | - |
351
+ | 30.7018 | 10500 | 0.0 | - |
352
+ | 30.8480 | 10550 | 0.0 | - |
353
+ | 30.9942 | 10600 | 0.0 | - |
354
+ | 31.1404 | 10650 | 0.0 | - |
355
+ | 31.2865 | 10700 | 0.0 | - |
356
+ | 31.4327 | 10750 | 0.0 | - |
357
+ | 31.5789 | 10800 | 0.0 | - |
358
+ | 31.7251 | 10850 | 0.0 | - |
359
+ | 31.8713 | 10900 | 0.0 | - |
360
+ | 32.0175 | 10950 | 0.0 | - |
361
+ | 32.1637 | 11000 | 0.0 | - |
362
+ | 32.3099 | 11050 | 0.0 | - |
363
+ | 32.4561 | 11100 | 0.0 | - |
364
+ | 32.6023 | 11150 | 0.0 | - |
365
+ | 32.7485 | 11200 | 0.0 | - |
366
+ | 32.8947 | 11250 | 0.0 | - |
367
+ | 33.0409 | 11300 | 0.0 | - |
368
+ | 33.1871 | 11350 | 0.0 | - |
369
+ | 33.3333 | 11400 | 0.0 | - |
370
+ | 33.4795 | 11450 | 0.0 | - |
371
+ | 33.6257 | 11500 | 0.0 | - |
372
+ | 33.7719 | 11550 | 0.0 | - |
373
+ | 33.9181 | 11600 | 0.0 | - |
374
+ | 34.0643 | 11650 | 0.0 | - |
375
+ | 34.2105 | 11700 | 0.0 | - |
376
+ | 34.3567 | 11750 | 0.0 | - |
377
+ | 34.5029 | 11800 | 0.0 | - |
378
+ | 34.6491 | 11850 | 0.0 | - |
379
+ | 34.7953 | 11900 | 0.0 | - |
380
+ | 34.9415 | 11950 | 0.0 | - |
381
 
382
  ### Framework Versions
383
  - Python: 3.10.12
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d870039c769fa154bdf1e2a274e01a52a48effcb94c9b1cc2a90ac254885ca8
3
  size 711436136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:644c4f4a9cb33923a21e3ecb35600216fae4a8ccef3a935e83841f42fc9878d0
3
  size 711436136
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:870dfac192d0419457e5b04571f82de86a74437298fa7e3a9f736b62d7773e34
3
  size 13956
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14186084f090269fefaaa3323445c3bc2c8235f2be303d0bc2eb47f6763c9c9f
3
  size 13956