Add SetFit model
Browse files- README.md +253 -214
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -8,12 +8,11 @@ tags:
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
widget:
|
11 |
-
- text:
|
12 |
-
- text:
|
13 |
-
- text:
|
14 |
-
- text:
|
15 |
-
- text:
|
16 |
-
Ventures、QRインベストメント、JA三井リース、ファストトラックイニシアティブ、SBIインベストメント、三菱UFJキャピタル、FFGベンチャービジネスパートナーズ、肥銀キャピタルを引受先とする総額23億5,000万円の資金調達を発表した。今後は、膵癌の国内治験および海外展開を含めた事業拡大に充当し、同社のビジョンである“音響工学(超音波)でがん患者さんに新たな未来をもたらす”を1日でも早く実現することを目指す。
|
17 |
pipeline_tag: text-classification
|
18 |
inference: false
|
19 |
model-index:
|
@@ -28,7 +27,7 @@ model-index:
|
|
28 |
split: test
|
29 |
metrics:
|
30 |
- type: accuracy
|
31 |
-
value: 0.
|
32 |
name: Accuracy
|
33 |
---
|
34 |
|
@@ -64,7 +63,7 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
64 |
### Metrics
|
65 |
| Label | Accuracy |
|
66 |
|:--------|:---------|
|
67 |
-
| **all** | 0.
|
68 |
|
69 |
## Uses
|
70 |
|
@@ -84,7 +83,7 @@ from setfit import SetFitModel
|
|
84 |
# Download from the 🤗 Hub
|
85 |
model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
|
86 |
# Run inference
|
87 |
-
preds = model("
|
88 |
```
|
89 |
|
90 |
<!--
|
@@ -116,14 +115,14 @@ preds = model("業務用冷凍食品の企画・開発・販売を行い、自
|
|
116 |
### Training Set Metrics
|
117 |
| Training set | Min | Median | Max |
|
118 |
|:-------------|:----|:-------|:----|
|
119 |
-
| Word count | 1 | 1.
|
120 |
|
121 |
### Training Hyperparameters
|
122 |
-
- batch_size: (
|
123 |
- num_epochs: (35, 35)
|
124 |
- max_steps: -1
|
125 |
- sampling_strategy: oversampling
|
126 |
-
- num_iterations:
|
127 |
- body_learning_rate: (2e-05, 2e-05)
|
128 |
- head_learning_rate: 2e-05
|
129 |
- loss: CosineSimilarityLoss
|
@@ -137,208 +136,248 @@ preds = model("業務用冷凍食品の企画・開発・販売を行い、自
|
|
137 |
- load_best_model_at_end: False
|
138 |
|
139 |
### Training Results
|
140 |
-
| Epoch | Step
|
141 |
-
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
|
|
149 |
-
| 1.
|
150 |
-
| 1.
|
151 |
-
| 1.
|
152 |
-
| 1.
|
153 |
-
| 1.
|
154 |
-
|
|
155 |
-
|
|
156 |
-
| 2.
|
157 |
-
| 2.
|
158 |
-
| 2.
|
159 |
-
| 2.
|
160 |
-
|
|
161 |
-
|
|
162 |
-
|
|
163 |
-
| 3.
|
164 |
-
| 3.
|
165 |
-
|
|
166 |
-
|
|
167 |
-
|
|
168 |
-
|
|
169 |
-
|
|
170 |
-
| 4.
|
171 |
-
|
|
172 |
-
|
|
173 |
-
|
|
174 |
-
|
|
175 |
-
|
|
176 |
-
|
|
177 |
-
|
|
178 |
-
|
|
179 |
-
|
|
180 |
-
|
|
181 |
-
|
|
182 |
-
|
|
183 |
-
|
|
184 |
-
|
|
185 |
-
|
|
186 |
-
|
|
187 |
-
|
|
188 |
-
|
|
189 |
-
|
|
190 |
-
|
|
191 |
-
|
|
192 |
-
|
|
193 |
-
|
|
194 |
-
|
|
195 |
-
|
|
196 |
-
|
|
197 |
-
|
|
198 |
-
|
|
199 |
-
|
|
200 |
-
|
|
201 |
-
|
|
202 |
-
|
|
203 |
-
|
|
204 |
-
|
|
205 |
-
|
|
206 |
-
|
|
207 |
-
|
|
208 |
-
|
|
209 |
-
|
|
210 |
-
|
|
211 |
-
|
|
212 |
-
|
|
213 |
-
|
|
214 |
-
|
|
215 |
-
|
|
216 |
-
|
|
217 |
-
|
|
218 |
-
|
|
219 |
-
|
|
220 |
-
|
|
221 |
-
|
|
222 |
-
|
|
223 |
-
|
|
224 |
-
|
|
225 |
-
|
|
226 |
-
|
|
227 |
-
|
|
228 |
-
|
|
229 |
-
|
|
230 |
-
|
|
231 |
-
|
|
232 |
-
|
|
233 |
-
|
|
234 |
-
|
|
235 |
-
|
|
236 |
-
|
|
237 |
-
|
|
238 |
-
|
|
239 |
-
|
|
240 |
-
|
|
241 |
-
|
|
242 |
-
|
|
243 |
-
|
|
244 |
-
|
|
245 |
-
|
|
246 |
-
|
|
247 |
-
|
|
248 |
-
|
|
249 |
-
|
|
250 |
-
|
|
251 |
-
|
|
252 |
-
|
|
253 |
-
|
|
254 |
-
|
|
255 |
-
|
|
256 |
-
|
|
257 |
-
|
|
258 |
-
|
|
259 |
-
|
|
260 |
-
|
|
261 |
-
|
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
-
|
|
273 |
-
|
|
274 |
-
|
|
275 |
-
|
|
276 |
-
|
|
277 |
-
|
|
278 |
-
|
|
279 |
-
|
|
280 |
-
|
|
281 |
-
|
|
282 |
-
|
|
283 |
-
|
|
284 |
-
|
|
285 |
-
|
|
286 |
-
|
|
287 |
-
|
|
288 |
-
|
|
289 |
-
|
|
290 |
-
|
|
291 |
-
|
|
292 |
-
|
|
293 |
-
|
|
294 |
-
|
|
295 |
-
|
|
296 |
-
|
|
297 |
-
|
|
298 |
-
|
|
299 |
-
|
|
300 |
-
|
|
301 |
-
|
|
302 |
-
|
|
303 |
-
|
|
304 |
-
|
|
305 |
-
|
|
306 |
-
|
|
307 |
-
|
|
308 |
-
|
|
309 |
-
|
|
310 |
-
|
|
311 |
-
|
|
312 |
-
|
|
313 |
-
|
|
314 |
-
|
|
315 |
-
|
|
316 |
-
|
|
317 |
-
|
|
318 |
-
|
|
319 |
-
|
|
320 |
-
|
|
321 |
-
|
|
322 |
-
|
|
323 |
-
|
|
324 |
-
|
|
325 |
-
|
|
326 |
-
|
|
327 |
-
|
|
328 |
-
|
|
329 |
-
|
|
330 |
-
|
|
331 |
-
|
|
332 |
-
|
|
333 |
-
|
|
334 |
-
|
|
335 |
-
|
|
336 |
-
|
|
337 |
-
|
|
338 |
-
|
|
339 |
-
|
|
340 |
-
|
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
### Framework Versions
|
344 |
- Python: 3.10.12
|
|
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
widget:
|
11 |
+
- text: スマホやタブレットPC、Oculus GOやVIVE、Apple Watchなど新しいデバイス向けアプリの企画・開発を行うスタートアップ。
|
12 |
+
- text: ベンチャー企業へのハンズオン投資などを行うベンチャーキャピタル。
|
13 |
+
- text: GoogleカレンダーやZoomと連携してスケジュール調整を自動化する日程調整ツール「Jicoo」を開発、提供するスタートアップ
|
14 |
+
- text: 住まい探しに特化したウェブサイト「TOKYO APARTMENTS」を提供する企業。
|
15 |
+
- text: 医療機器、産業機器の研究開発・製造販売を行う企業。
|
|
|
16 |
pipeline_tag: text-classification
|
17 |
inference: false
|
18 |
model-index:
|
|
|
27 |
split: test
|
28 |
metrics:
|
29 |
- type: accuracy
|
30 |
+
value: 0.7272727272727273
|
31 |
name: Accuracy
|
32 |
---
|
33 |
|
|
|
63 |
### Metrics
|
64 |
| Label | Accuracy |
|
65 |
|:--------|:---------|
|
66 |
+
| **all** | 0.7273 |
|
67 |
|
68 |
## Uses
|
69 |
|
|
|
83 |
# Download from the 🤗 Hub
|
84 |
model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
|
85 |
# Run inference
|
86 |
+
preds = model("医療機器、産業機器の研究開発・製造販売を行う企業。")
|
87 |
```
|
88 |
|
89 |
<!--
|
|
|
115 |
### Training Set Metrics
|
116 |
| Training set | Min | Median | Max |
|
117 |
|:-------------|:----|:-------|:----|
|
118 |
+
| Word count | 1 | 1.9824 | 57 |
|
119 |
|
120 |
### Training Hyperparameters
|
121 |
+
- batch_size: (10, 10)
|
122 |
- num_epochs: (35, 35)
|
123 |
- max_steps: -1
|
124 |
- sampling_strategy: oversampling
|
125 |
+
- num_iterations: 3
|
126 |
- body_learning_rate: (2e-05, 2e-05)
|
127 |
- head_learning_rate: 2e-05
|
128 |
- loss: CosineSimilarityLoss
|
|
|
136 |
- load_best_model_at_end: False
|
137 |
|
138 |
### Training Results
|
139 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
140 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
141 |
+
| 0.0029 | 1 | 0.2602 | - |
|
142 |
+
| 0.1462 | 50 | 0.25 | - |
|
143 |
+
| 0.2924 | 100 | 0.1712 | - |
|
144 |
+
| 0.4386 | 150 | 0.2671 | - |
|
145 |
+
| 0.5848 | 200 | 0.2288 | - |
|
146 |
+
| 0.7310 | 250 | 0.2253 | - |
|
147 |
+
| 0.8772 | 300 | 0.2675 | - |
|
148 |
+
| 1.0234 | 350 | 0.1204 | - |
|
149 |
+
| 1.1696 | 400 | 0.1185 | - |
|
150 |
+
| 1.3158 | 450 | 0.1884 | - |
|
151 |
+
| 1.4620 | 500 | 0.2311 | - |
|
152 |
+
| 1.6082 | 550 | 0.0659 | - |
|
153 |
+
| 1.7544 | 600 | 0.1719 | - |
|
154 |
+
| 1.9006 | 650 | 0.0094 | - |
|
155 |
+
| 2.0468 | 700 | 0.0237 | - |
|
156 |
+
| 2.1930 | 750 | 0.0007 | - |
|
157 |
+
| 2.3392 | 800 | 0.0021 | - |
|
158 |
+
| 2.4854 | 850 | 0.0013 | - |
|
159 |
+
| 2.6316 | 900 | 0.1887 | - |
|
160 |
+
| 2.7778 | 950 | 0.0004 | - |
|
161 |
+
| 2.9240 | 1000 | 0.0001 | - |
|
162 |
+
| 3.0702 | 1050 | 0.0003 | - |
|
163 |
+
| 3.2164 | 1100 | 0.0764 | - |
|
164 |
+
| 3.3626 | 1150 | 0.0025 | - |
|
165 |
+
| 3.5088 | 1200 | 0.0001 | - |
|
166 |
+
| 3.6550 | 1250 | 0.0001 | - |
|
167 |
+
| 3.8012 | 1300 | 0.0001 | - |
|
168 |
+
| 3.9474 | 1350 | 0.0001 | - |
|
169 |
+
| 4.0936 | 1400 | 0.0 | - |
|
170 |
+
| 4.2398 | 1450 | 0.0001 | - |
|
171 |
+
| 4.3860 | 1500 | 0.0001 | - |
|
172 |
+
| 4.5322 | 1550 | 0.0 | - |
|
173 |
+
| 4.6784 | 1600 | 0.0 | - |
|
174 |
+
| 4.8246 | 1650 | 0.0 | - |
|
175 |
+
| 4.9708 | 1700 | 0.0 | - |
|
176 |
+
| 5.1170 | 1750 | 0.0001 | - |
|
177 |
+
| 5.2632 | 1800 | 0.0 | - |
|
178 |
+
| 5.4094 | 1850 | 0.0 | - |
|
179 |
+
| 5.5556 | 1900 | 0.0 | - |
|
180 |
+
| 5.7018 | 1950 | 0.0883 | - |
|
181 |
+
| 5.8480 | 2000 | 0.0 | - |
|
182 |
+
| 5.9942 | 2050 | 0.0 | - |
|
183 |
+
| 6.1404 | 2100 | 0.0 | - |
|
184 |
+
| 6.2865 | 2150 | 0.0 | - |
|
185 |
+
| 6.4327 | 2200 | 0.0 | - |
|
186 |
+
| 6.5789 | 2250 | 0.0 | - |
|
187 |
+
| 6.7251 | 2300 | 0.0 | - |
|
188 |
+
| 6.8713 | 2350 | 0.0 | - |
|
189 |
+
| 7.0175 | 2400 | 0.0 | - |
|
190 |
+
| 7.1637 | 2450 | 0.0 | - |
|
191 |
+
| 7.3099 | 2500 | 0.0 | - |
|
192 |
+
| 7.4561 | 2550 | 0.0 | - |
|
193 |
+
| 7.6023 | 2600 | 0.0 | - |
|
194 |
+
| 7.7485 | 2650 | 0.0 | - |
|
195 |
+
| 7.8947 | 2700 | 0.0 | - |
|
196 |
+
| 8.0409 | 2750 | 0.0 | - |
|
197 |
+
| 8.1871 | 2800 | 0.0 | - |
|
198 |
+
| 8.3333 | 2850 | 0.0 | - |
|
199 |
+
| 8.4795 | 2900 | 0.0 | - |
|
200 |
+
| 8.6257 | 2950 | 0.0 | - |
|
201 |
+
| 8.7719 | 3000 | 0.0 | - |
|
202 |
+
| 8.9181 | 3050 | 0.0 | - |
|
203 |
+
| 9.0643 | 3100 | 0.0 | - |
|
204 |
+
| 9.2105 | 3150 | 0.0 | - |
|
205 |
+
| 9.3567 | 3200 | 0.0 | - |
|
206 |
+
| 9.5029 | 3250 | 0.0618 | - |
|
207 |
+
| 9.6491 | 3300 | 0.3522 | - |
|
208 |
+
| 9.7953 | 3350 | 0.0051 | - |
|
209 |
+
| 9.9415 | 3400 | 0.0002 | - |
|
210 |
+
| 10.0877 | 3450 | 0.0018 | - |
|
211 |
+
| 10.2339 | 3500 | 0.0027 | - |
|
212 |
+
| 10.3801 | 3550 | 0.0001 | - |
|
213 |
+
| 10.5263 | 3600 | 0.0 | - |
|
214 |
+
| 10.6725 | 3650 | 0.0 | - |
|
215 |
+
| 10.8187 | 3700 | 0.0001 | - |
|
216 |
+
| 10.9649 | 3750 | 0.0 | - |
|
217 |
+
| 11.1111 | 3800 | 0.0 | - |
|
218 |
+
| 11.2573 | 3850 | 0.0001 | - |
|
219 |
+
| 11.4035 | 3900 | 0.0001 | - |
|
220 |
+
| 11.5497 | 3950 | 0.0 | - |
|
221 |
+
| 11.6959 | 4000 | 0.0 | - |
|
222 |
+
| 11.8421 | 4050 | 0.0 | - |
|
223 |
+
| 11.9883 | 4100 | 0.0 | - |
|
224 |
+
| 12.1345 | 4150 | 0.0 | - |
|
225 |
+
| 12.2807 | 4200 | 0.0001 | - |
|
226 |
+
| 12.4269 | 4250 | 0.0 | - |
|
227 |
+
| 12.5731 | 4300 | 0.0 | - |
|
228 |
+
| 12.7193 | 4350 | 0.0003 | - |
|
229 |
+
| 12.8655 | 4400 | 0.0 | - |
|
230 |
+
| 13.0117 | 4450 | 0.0 | - |
|
231 |
+
| 13.1579 | 4500 | 0.0 | - |
|
232 |
+
| 13.3041 | 4550 | 0.0 | - |
|
233 |
+
| 13.4503 | 4600 | 0.0 | - |
|
234 |
+
| 13.5965 | 4650 | 0.0 | - |
|
235 |
+
| 13.7427 | 4700 | 0.0 | - |
|
236 |
+
| 13.8889 | 4750 | 0.0 | - |
|
237 |
+
| 14.0351 | 4800 | 0.0 | - |
|
238 |
+
| 14.1813 | 4850 | 0.0 | - |
|
239 |
+
| 14.3275 | 4900 | 0.0 | - |
|
240 |
+
| 14.4737 | 4950 | 0.0 | - |
|
241 |
+
| 14.6199 | 5000 | 0.0 | - |
|
242 |
+
| 14.7661 | 5050 | 0.0 | - |
|
243 |
+
| 14.9123 | 5100 | 0.0 | - |
|
244 |
+
| 15.0585 | 5150 | 0.0 | - |
|
245 |
+
| 15.2047 | 5200 | 0.0 | - |
|
246 |
+
| 15.3509 | 5250 | 0.0 | - |
|
247 |
+
| 15.4971 | 5300 | 0.0 | - |
|
248 |
+
| 15.6433 | 5350 | 0.0 | - |
|
249 |
+
| 15.7895 | 5400 | 0.0 | - |
|
250 |
+
| 15.9357 | 5450 | 0.0 | - |
|
251 |
+
| 16.0819 | 5500 | 0.0 | - |
|
252 |
+
| 16.2281 | 5550 | 0.0 | - |
|
253 |
+
| 16.3743 | 5600 | 0.0 | - |
|
254 |
+
| 16.5205 | 5650 | 0.0 | - |
|
255 |
+
| 16.6667 | 5700 | 0.0 | - |
|
256 |
+
| 16.8129 | 5750 | 0.0 | - |
|
257 |
+
| 16.9591 | 5800 | 0.0 | - |
|
258 |
+
| 17.1053 | 5850 | 0.0 | - |
|
259 |
+
| 17.2515 | 5900 | 0.0 | - |
|
260 |
+
| 17.3977 | 5950 | 0.0 | - |
|
261 |
+
| 17.5439 | 6000 | 0.0 | - |
|
262 |
+
| 17.6901 | 6050 | 0.0 | - |
|
263 |
+
| 17.8363 | 6100 | 0.0 | - |
|
264 |
+
| 17.9825 | 6150 | 0.0 | - |
|
265 |
+
| 18.1287 | 6200 | 0.0 | - |
|
266 |
+
| 18.2749 | 6250 | 0.0 | - |
|
267 |
+
| 18.4211 | 6300 | 0.0 | - |
|
268 |
+
| 18.5673 | 6350 | 0.0 | - |
|
269 |
+
| 18.7135 | 6400 | 0.0 | - |
|
270 |
+
| 18.8596 | 6450 | 0.0 | - |
|
271 |
+
| 19.0058 | 6500 | 0.0 | - |
|
272 |
+
| 19.1520 | 6550 | 0.0 | - |
|
273 |
+
| 19.2982 | 6600 | 0.0 | - |
|
274 |
+
| 19.4444 | 6650 | 0.0 | - |
|
275 |
+
| 19.5906 | 6700 | 0.0 | - |
|
276 |
+
| 19.7368 | 6750 | 0.0 | - |
|
277 |
+
| 19.8830 | 6800 | 0.0 | - |
|
278 |
+
| 20.0292 | 6850 | 0.0 | - |
|
279 |
+
| 20.1754 | 6900 | 0.0 | - |
|
280 |
+
| 20.3216 | 6950 | 0.0 | - |
|
281 |
+
| 20.4678 | 7000 | 0.0 | - |
|
282 |
+
| 20.6140 | 7050 | 0.0 | - |
|
283 |
+
| 20.7602 | 7100 | 0.0 | - |
|
284 |
+
| 20.9064 | 7150 | 0.0 | - |
|
285 |
+
| 21.0526 | 7200 | 0.0 | - |
|
286 |
+
| 21.1988 | 7250 | 0.0 | - |
|
287 |
+
| 21.3450 | 7300 | 0.0 | - |
|
288 |
+
| 21.4912 | 7350 | 0.0 | - |
|
289 |
+
| 21.6374 | 7400 | 0.0 | - |
|
290 |
+
| 21.7836 | 7450 | 0.0 | - |
|
291 |
+
| 21.9298 | 7500 | 0.0 | - |
|
292 |
+
| 22.0760 | 7550 | 0.0 | - |
|
293 |
+
| 22.2222 | 7600 | 0.0 | - |
|
294 |
+
| 22.3684 | 7650 | 0.0 | - |
|
295 |
+
| 22.5146 | 7700 | 0.0 | - |
|
296 |
+
| 22.6608 | 7750 | 0.0 | - |
|
297 |
+
| 22.8070 | 7800 | 0.0 | - |
|
298 |
+
| 22.9532 | 7850 | 0.0 | - |
|
299 |
+
| 23.0994 | 7900 | 0.0 | - |
|
300 |
+
| 23.2456 | 7950 | 0.0 | - |
|
301 |
+
| 23.3918 | 8000 | 0.0 | - |
|
302 |
+
| 23.5380 | 8050 | 0.0 | - |
|
303 |
+
| 23.6842 | 8100 | 0.0 | - |
|
304 |
+
| 23.8304 | 8150 | 0.0 | - |
|
305 |
+
| 23.9766 | 8200 | 0.0 | - |
|
306 |
+
| 24.1228 | 8250 | 0.0858 | - |
|
307 |
+
| 24.2690 | 8300 | 0.0 | - |
|
308 |
+
| 24.4152 | 8350 | 0.0001 | - |
|
309 |
+
| 24.5614 | 8400 | 0.0 | - |
|
310 |
+
| 24.7076 | 8450 | 0.0005 | - |
|
311 |
+
| 24.8538 | 8500 | 0.0992 | - |
|
312 |
+
| 25.0 | 8550 | 0.0 | - |
|
313 |
+
| 25.1462 | 8600 | 0.0 | - |
|
314 |
+
| 25.2924 | 8650 | 0.0 | - |
|
315 |
+
| 25.4386 | 8700 | 0.0 | - |
|
316 |
+
| 25.5848 | 8750 | 0.0 | - |
|
317 |
+
| 25.7310 | 8800 | 0.0 | - |
|
318 |
+
| 25.8772 | 8850 | 0.0 | - |
|
319 |
+
| 26.0234 | 8900 | 0.0 | - |
|
320 |
+
| 26.1696 | 8950 | 0.0 | - |
|
321 |
+
| 26.3158 | 9000 | 0.0 | - |
|
322 |
+
| 26.4620 | 9050 | 0.0 | - |
|
323 |
+
| 26.6082 | 9100 | 0.0 | - |
|
324 |
+
| 26.7544 | 9150 | 0.0 | - |
|
325 |
+
| 26.9006 | 9200 | 0.0 | - |
|
326 |
+
| 27.0468 | 9250 | 0.0 | - |
|
327 |
+
| 27.1930 | 9300 | 0.0 | - |
|
328 |
+
| 27.3392 | 9350 | 0.0 | - |
|
329 |
+
| 27.4854 | 9400 | 0.0 | - |
|
330 |
+
| 27.6316 | 9450 | 0.0 | - |
|
331 |
+
| 27.7778 | 9500 | 0.0 | - |
|
332 |
+
| 27.9240 | 9550 | 0.0 | - |
|
333 |
+
| 28.0702 | 9600 | 0.0 | - |
|
334 |
+
| 28.2164 | 9650 | 0.0 | - |
|
335 |
+
| 28.3626 | 9700 | 0.0 | - |
|
336 |
+
| 28.5088 | 9750 | 0.0 | - |
|
337 |
+
| 28.6550 | 9800 | 0.0 | - |
|
338 |
+
| 28.8012 | 9850 | 0.0 | - |
|
339 |
+
| 28.9474 | 9900 | 0.0 | - |
|
340 |
+
| 29.0936 | 9950 | 0.0 | - |
|
341 |
+
| 29.2398 | 10000 | 0.0 | - |
|
342 |
+
| 29.3860 | 10050 | 0.0 | - |
|
343 |
+
| 29.5322 | 10100 | 0.0 | - |
|
344 |
+
| 29.6784 | 10150 | 0.0 | - |
|
345 |
+
| 29.8246 | 10200 | 0.0 | - |
|
346 |
+
| 29.9708 | 10250 | 0.0 | - |
|
347 |
+
| 30.1170 | 10300 | 0.0 | - |
|
348 |
+
| 30.2632 | 10350 | 0.0 | - |
|
349 |
+
| 30.4094 | 10400 | 0.0 | - |
|
350 |
+
| 30.5556 | 10450 | 0.0 | - |
|
351 |
+
| 30.7018 | 10500 | 0.0 | - |
|
352 |
+
| 30.8480 | 10550 | 0.0 | - |
|
353 |
+
| 30.9942 | 10600 | 0.0 | - |
|
354 |
+
| 31.1404 | 10650 | 0.0 | - |
|
355 |
+
| 31.2865 | 10700 | 0.0 | - |
|
356 |
+
| 31.4327 | 10750 | 0.0 | - |
|
357 |
+
| 31.5789 | 10800 | 0.0 | - |
|
358 |
+
| 31.7251 | 10850 | 0.0 | - |
|
359 |
+
| 31.8713 | 10900 | 0.0 | - |
|
360 |
+
| 32.0175 | 10950 | 0.0 | - |
|
361 |
+
| 32.1637 | 11000 | 0.0 | - |
|
362 |
+
| 32.3099 | 11050 | 0.0 | - |
|
363 |
+
| 32.4561 | 11100 | 0.0 | - |
|
364 |
+
| 32.6023 | 11150 | 0.0 | - |
|
365 |
+
| 32.7485 | 11200 | 0.0 | - |
|
366 |
+
| 32.8947 | 11250 | 0.0 | - |
|
367 |
+
| 33.0409 | 11300 | 0.0 | - |
|
368 |
+
| 33.1871 | 11350 | 0.0 | - |
|
369 |
+
| 33.3333 | 11400 | 0.0 | - |
|
370 |
+
| 33.4795 | 11450 | 0.0 | - |
|
371 |
+
| 33.6257 | 11500 | 0.0 | - |
|
372 |
+
| 33.7719 | 11550 | 0.0 | - |
|
373 |
+
| 33.9181 | 11600 | 0.0 | - |
|
374 |
+
| 34.0643 | 11650 | 0.0 | - |
|
375 |
+
| 34.2105 | 11700 | 0.0 | - |
|
376 |
+
| 34.3567 | 11750 | 0.0 | - |
|
377 |
+
| 34.5029 | 11800 | 0.0 | - |
|
378 |
+
| 34.6491 | 11850 | 0.0 | - |
|
379 |
+
| 34.7953 | 11900 | 0.0 | - |
|
380 |
+
| 34.9415 | 11950 | 0.0 | - |
|
381 |
|
382 |
### Framework Versions
|
383 |
- Python: 3.10.12
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 711436136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:644c4f4a9cb33923a21e3ecb35600216fae4a8ccef3a935e83841f42fc9878d0
|
3 |
size 711436136
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 13956
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14186084f090269fefaaa3323445c3bc2c8235f2be303d0bc2eb47f6763c9c9f
|
3 |
size 13956
|