File size: 3,467 Bytes
79dad9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a029ba8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: cc-by-nc-4.0
pipeline_tag: sentence-similarity
tags:
    - sentence-transformers
    - feature-extraction
    - sentence-similarity
    - transformers
    - generated_from_trainer
datasets:
    - squad
    - newsqa
    - LLukas22/cqadupstack
    - LLukas22/fiqa
    - LLukas22/scidocs
    - deepset/germanquad
    - LLukas22/nq
---

# all-mpnet-base-v2-embedding-all

This model is a fine-tuned version of [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq).



## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('LLukas22/all-mpnet-base-v2-embedding-all')
embeddings = model.encode(sentences)
print(embeddings)
```

## Training hyperparameters
The following hyperparameters were used during training:

- learning_rate: 1E+00
- per device batch size: 60
- effective batch size: 180
- seed: 42
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08
- weight decay: 2E-02
- D-Adaptation: True
- Warmup: True
- number of epochs: 15
- mixed_precision_training: bf16

## Training results
| Epoch | Train Loss | Validation Loss |
| ----- | ---------- | --------------- |
| 0 | 0.0554 | 0.047 |
| 1 | 0.044 | 0.0472 |
| 2 | 0.0374 | 0.0425 |
| 3 | 0.0322 | 0.041 |
| 4 | 0.0278 | 0.0403 |
| 5 | 0.0246 | 0.0389 |
| 6 | 0.0215 | 0.0389 |
| 7 | 0.0192 | 0.0388 |
| 8 | 0.017 | 0.0379 |
| 9 | 0.0154 | 0.0375 |
| 10 | 0.0142 | 0.0381 |
| 11 | 0.0132 | 0.0372 |
| 12 | 0.0126 | 0.0377 |
| 13 | 0.012 | 0.0377 |

## Evaluation results
| Epoch | top_1 | top_3 | top_5 | top_10 | top_25 |
| ----- | ----- | ----- | ----- | ----- | ----- |
| 0 | 0.373 | 0.476 | 0.509 | 0.544 | 0.573 |
| 1 | 0.362 | 0.466 | 0.501 | 0.537 | 0.568 |
| 2 | 0.371 | 0.476 | 0.511 | 0.546 | 0.576 |
| 3 | 0.369 | 0.473 | 0.506 | 0.54 | 0.569 |
| 4 | 0.373 | 0.478 | 0.512 | 0.547 | 0.578 |
| 5 | 0.378 | 0.483 | 0.517 | 0.552 | 0.58 |
| 6 | 0.371 | 0.475 | 0.509 | 0.543 | 0.571 |
| 7 | 0.379 | 0.484 | 0.517 | 0.55 | 0.578 |
| 8 | 0.378 | 0.482 | 0.515 | 0.548 | 0.575 |
| 9 | 0.383 | 0.489 | 0.523 | 0.556 | 0.584 |
| 10 | 0.38 | 0.483 | 0.517 | 0.549 | 0.575 |
| 11 | 0.38 | 0.485 | 0.518 | 0.551 | 0.577 |
| 12 | 0.383 | 0.489 | 0.522 | 0.556 | 0.582 |
| 13 | 0.385 | 0.49 | 0.523 | 0.555 | 0.581 |

## Framework versions
- Transformers: 4.25.1
- PyTorch: 2.0.0.dev20230210+cu118
- PyTorch Lightning: 1.8.6
- Datasets: 2.7.1
- Tokenizers: 0.13.1
- Sentence Transformers: 2.2.2

## Additional Information
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Retrieval-Augmented-QA).