LaLegumbreArtificial commited on
Commit
bdfaa95
1 Parent(s): e1fd895

End of training

Browse files
Files changed (1) hide show
  1. README.md +44 -21
README.md CHANGED
@@ -2,23 +2,38 @@
2
  license: apache-2.0
3
  base_model: facebook/convnextv2-tiny-1k-224
4
  tags:
5
- - generated_from_keras_callback
 
 
 
 
6
  model-index:
7
- - name: LaLegumbreArtificial/cv_model_DP_1
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
- probably proofread and complete it, then remove this comment. -->
13
 
14
- # LaLegumbreArtificial/cv_model_DP_1
15
 
16
- This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Train Loss: 0.3776
19
- - Validation Loss: 0.4951
20
- - Train Accuracy: 0.7315
21
- - Epoch: 4
22
 
23
  ## Model description
24
 
@@ -37,23 +52,31 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
41
- - training_precision: float32
 
 
 
 
 
 
 
 
42
 
43
  ### Training results
44
 
45
- | Train Loss | Validation Loss | Train Accuracy | Epoch |
46
- |:----------:|:---------------:|:--------------:|:-----:|
47
- | 0.5322 | 0.4468 | 0.8297 | 0 |
48
- | 0.4456 | 0.4137 | 0.8138 | 1 |
49
- | 0.4190 | 0.3926 | 0.9027 | 2 |
50
- | 0.3930 | 0.3833 | 0.8926 | 3 |
51
- | 0.3776 | 0.4951 | 0.7315 | 4 |
52
 
53
 
54
  ### Framework versions
55
 
56
  - Transformers 4.41.2
57
- - TensorFlow 2.15.0
58
  - Datasets 2.19.2
59
  - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: facebook/convnextv2-tiny-1k-224
4
  tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
+ - name: cv_model_DP_1
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.9932885906040269
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
 
31
+ # cv_model_DP_1
32
 
33
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.0204
36
+ - Accuracy: 0.9933
 
 
37
 
38
  ## Model description
39
 
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | 0.0547 | 0.9954 | 162 | 0.0647 | 0.9790 |
71
+ | 0.0356 | 1.9969 | 325 | 0.0438 | 0.9841 |
72
+ | 0.0187 | 2.9985 | 488 | 0.0260 | 0.9908 |
73
+ | 0.0049 | 4.0 | 651 | 0.0360 | 0.9874 |
74
+ | 0.0165 | 4.9770 | 810 | 0.0204 | 0.9933 |
75
 
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.41.2
80
+ - Pytorch 2.1.2
81
  - Datasets 2.19.2
82
  - Tokenizers 0.19.1