File size: 4,854 Bytes
fdaf5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1189d4
 
 
fdaf5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436eda
 
e74b7e1
8652f62
e7b8b73
00375ee
 
c648230
 
45c7146
 
a2f1edb
 
 
8224acd
 
ba7af8c
 
edbfc81
e658c9d
cca4293
 
9441952
ba155bf
 
 
b3c5f24
 
3d14632
9996efc
4dd658b
 
 
3fc3143
66ab198
52990b7
 
 
3ec9ce2
 
454a4e6
 
 
5668bca
e1743d9
 
b39562f
 
 
2bb7f5c
 
a20cde1
 
4831a42
 
b7f86fc
 
1dc45fc
 
2b3fe38
cff56d5
 
 
3b9c573
b5bc834
 
300d8c4
 
 
cf2e1c8
 
eddb979
 
a1189d4
 
fdaf5d8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
license: mit
base_model: Labira/LabiraPJOK_2_100_Full
tags:
- generated_from_keras_callback
model-index:
- name: Labira/LabiraPJOK_3_100_Full
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Labira/LabiraPJOK_3_100_Full

This model is a fine-tuned version of [Labira/LabiraPJOK_2_100_Full](https://huggingface.co/Labira/LabiraPJOK_2_100_Full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0020
- Validation Loss: 0.0007
- Epoch: 75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1100, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.7614     | 1.1522          | 0     |
| 1.5531     | 0.5524          | 1     |
| 1.0482     | 0.2232          | 2     |
| 0.5443     | 0.0847          | 3     |
| 0.5227     | 0.0529          | 4     |
| 0.2873     | 0.0412          | 5     |
| 0.2568     | 0.0330          | 6     |
| 0.1310     | 0.0190          | 7     |
| 0.1108     | 0.0067          | 8     |
| 0.1252     | 0.0117          | 9     |
| 0.0740     | 0.0071          | 10    |
| 0.0507     | 0.0059          | 11    |
| 0.0790     | 0.0058          | 12    |
| 0.0282     | 0.0036          | 13    |
| 0.0562     | 0.0070          | 14    |
| 0.0850     | 0.0047          | 15    |
| 0.0715     | 0.0176          | 16    |
| 0.0724     | 0.0077          | 17    |
| 0.0361     | 0.0024          | 18    |
| 0.0266     | 0.0029          | 19    |
| 0.0207     | 0.0026          | 20    |
| 0.0158     | 0.0023          | 21    |
| 0.0086     | 0.0016          | 22    |
| 0.0214     | 0.0093          | 23    |
| 0.0327     | 0.0063          | 24    |
| 0.0102     | 0.0016          | 25    |
| 0.0072     | 0.0012          | 26    |
| 0.0273     | 0.0024          | 27    |
| 0.0185     | 0.0034          | 28    |
| 0.0091     | 0.0018          | 29    |
| 0.0144     | 0.0021          | 30    |
| 0.0107     | 0.0032          | 31    |
| 0.0632     | 0.0037          | 32    |
| 0.0149     | 0.0034          | 33    |
| 0.0151     | 0.0103          | 34    |
| 0.0195     | 0.0081          | 35    |
| 0.0145     | 0.0023          | 36    |
| 0.0150     | 0.0012          | 37    |
| 0.0126     | 0.0018          | 38    |
| 0.0068     | 0.0017          | 39    |
| 0.0057     | 0.0014          | 40    |
| 0.0075     | 0.0015          | 41    |
| 0.0035     | 0.0015          | 42    |
| 0.0059     | 0.0013          | 43    |
| 0.0040     | 0.0010          | 44    |
| 0.0036     | 0.0009          | 45    |
| 0.0040     | 0.0011          | 46    |
| 0.0058     | 0.0020          | 47    |
| 0.0801     | 0.0013          | 48    |
| 0.0062     | 0.0014          | 49    |
| 0.0049     | 0.0011          | 50    |
| 0.0057     | 0.0012          | 51    |
| 0.0023     | 0.0011          | 52    |
| 0.0047     | 0.0007          | 53    |
| 0.0041     | 0.0006          | 54    |
| 0.0056     | 0.0012          | 55    |
| 0.0035     | 0.0016          | 56    |
| 0.0042     | 0.0011          | 57    |
| 0.0029     | 0.0006          | 58    |
| 0.0025     | 0.0004          | 59    |
| 0.0229     | 0.0085          | 60    |
| 0.0057     | 0.0075          | 61    |
| 0.0038     | 0.0050          | 62    |
| 0.0047     | 0.0014          | 63    |
| 0.0024     | 0.0006          | 64    |
| 0.0021     | 0.0005          | 65    |
| 0.0480     | 0.0008          | 66    |
| 0.0041     | 0.0010          | 67    |
| 0.0038     | 0.0010          | 68    |
| 0.0032     | 0.0010          | 69    |
| 0.0037     | 0.0009          | 70    |
| 0.0027     | 0.0007          | 71    |
| 0.0041     | 0.0007          | 72    |
| 0.0039     | 0.0006          | 73    |
| 0.0024     | 0.0007          | 74    |
| 0.0020     | 0.0007          | 75    |


### Framework versions

- Transformers 4.46.2
- TensorFlow 2.17.0
- Datasets 3.1.0
- Tokenizers 0.20.3