--- base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-base-cs-cv11-timestetch02-gain01-pitch02-gaussian02-lowpass01-timemask020-freqmask020 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: cs split: None args: cs metrics: - name: Wer type: wer value: 31.65358971525399 --- # whisper-base-cs-cv11-timestetch02-gain01-pitch02-gaussian02-lowpass01-timemask020-freqmask020 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3065 - Wer: 31.6536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8775 | 0.72 | 1000 | 0.4722 | 45.7067 | | 0.6983 | 1.44 | 2000 | 0.3854 | 38.8275 | | 0.5251 | 2.17 | 3000 | 0.3505 | 35.8143 | | 0.5001 | 2.89 | 4000 | 0.3291 | 33.8619 | | 0.4956 | 3.61 | 5000 | 0.3192 | 33.0405 | | 0.4256 | 4.33 | 6000 | 0.3110 | 32.4364 | | 0.398 | 5.06 | 7000 | 0.3081 | 32.0588 | | 0.3921 | 5.78 | 8000 | 0.3065 | 31.6536 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2