--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-cs results: [] --- # whisper-base-cs This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the CommonVoice11 dataset. It achieves the following results on the evaluation set: - Loss: 0.3785 - Wer: 35.4791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results BASE-CS baseline performance: {'eval_loss': 2.514087438583374, 'eval_wer': 82.45662504144104, 'eval_runtime': 2620.0407, 'eval_samples_per_second': 2.944, 'eval_steps_per_second': 0.368} | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | ------ | 0.00 | 0000 | 2.5141 | 82.4566 | | 0.2991 | 1.44 | 1000 | 0.4414 | 42.2993 | | 0.1776 | 2.89 | 2000 | 0.3818 | 36.7573 | | 0.0916 | 4.33 | 3000 | 0.3774 | 35.6080 | | 0.076 | 5.78 | 4000 | 0.3785 | 35.4791 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0