File size: 11,698 Bytes
75487c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import tkinter
from tkinter import messagebox
from tkinter import *
import pickle
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from tensorflow.keras.models import Model
from tensorflow.keras import models
from tensorflow.keras.layers import Input, LSTM, Dense
import speech_recognition as sr
import pyttsx3

BG_GRAY = "#ABB2B9"
BG_COLOR = "#000"
TEXT_COLOR = "#000"
FONT = "Melvetica 14"
FONT_BOLD = "Melvetica 13 bold"

cv = CountVectorizer(binary=True, tokenizer=lambda txt: txt.split(), stop_words=None, analyzer='char')


class LangTRans:
    def __init__(self):
        # initialize tkinter window and load the file
        self.window = Tk()
        self.demo_window()
        self.datafile()

    def datafile(self):
        # get all datas from datafile and load the model.
        datafile = pickle.load(open("training_data.pkl", "rb"))
        self.input_characters = datafile['input_characters']
        self.target_characters = datafile['target_characters']
        self.max_input_length = datafile['max_input_length']
        self.max_target_length = datafile['max_target_length']
        self.num_en_chars = datafile['num_en_chars']
        self.num_dec_chars = datafile['num_dec_chars']
        self.loadmodel()

    # runwindow
    def run(self):
        self.window.mainloop()

    def run2(self):
        self.window.mainloop()

    def demo_window(self):
        self.window.title("Language Translator")
        self.window.resizable(width=False, height=False)
        self.window.configure(width=800, height=300)

        # head_label.place(relwidth=1)
        # line = Label(self.window,width=450,bg=BG_COLOR)
        # line.place(relwidth=1,rely=0.07,relheight=0.012)
        self.myText = StringVar()
        head_label = Label(self.window, text="Translate to french Language!", font=FONT_BOLD, pady=10)
        head_label.grid(row=0, column=3, padx=20, pady=20, columnspan=5)
        head_label.grid_rowconfigure(1, weight=1)
        head_label.grid_columnconfigure(1, weight=1)

        Label(self.window, text="Input Text:").grid(row=1, padx=10, pady=10)
        self.e1 = Entry(self.window)
        self.e1.grid(row=2, column=1)
        send_button2 = Button(self.window, text="Voice", font=FONT_BOLD, width=2, bg="Red",
                              command=lambda: self.voice_input(None))
        send_button2.grid(row=3, column=1, sticky=W + E + N + S, padx=20, pady=20)
        Label(self.window, text="Translated text in French:").grid(row=1, column=4,sticky="W")
        self.output_box = Label(self.window, width=20, text="", textvariable=self.myText)
        self.output_box.grid(row=2, column=5)
        self.e1 = Entry(self.window)
        self.e1.grid(row=1, column=1)
        send_button = Button(self.window, text="Translate", font=FONT_BOLD, width=2, bg="blue", command=lambda: self.on_enter(None))
        send_button.grid(row=3, column=3, sticky=W + E + N + S, padx=20, pady=20)

        send_button1 = Button(self.window, text="Voice Output", font=FONT_BOLD, bg="Red",
                              command=lambda: self.on_enter_voice(None))
        send_button1.grid(row=3, column=4, sticky=W + E + N + S, padx=20, pady=20)

    def main_window(self):
        # add title to window and configure it
        self.window.title("Language Translator")
        self.window.resizable(width=False, height=False)
        self.window.configure(width=520, height=520, bg=BG_COLOR)

        head_label = Label(self.window, bg=BG_COLOR, fg=TEXT_COLOR, text="Translate to french Language!",
                           font=FONT_BOLD, pady=10)
        head_label.place(relwidth=1)
        line = Label(self.window, width=450, bg=BG_COLOR)
        line.place(relwidth=1, rely=0.07, relheight=0.012)

        # create text widget where input and output will be displayed
        self.text_widget = Text(self.window, width=20, height=2, bg="#fff", fg="#000", font=FONT, padx=5, pady=5)
        self.text_widget.place(relheight=0.745, relwidth=1, rely=0.08)
        self.text_widget.configure(cursor="arrow", state=DISABLED)

        # create scrollbar
        scrollbar = Scrollbar(self.text_widget)
        scrollbar.place(relheight=1, relx=0.974)
        scrollbar.configure(command=self.text_widget.yview)

        # create bottom label where text widget will placed
        bottom_label = Label(self.window, bg=BG_GRAY, height=80)
        bottom_label.place(relwidth=1, rely=0.825)
        # this is for user to put english text
        self.msg_entry = Entry(bottom_label, bg="#2C3E50", fg=TEXT_COLOR, font=FONT)
        self.msg_entry.place(relwidth=0.65, relheight=0.06, rely=0.008, relx=0.008)
        self.msg_entry.focus()
        self.msg_entry.bind("<Return>", self.on_enter)
        # send button which will call on_enter function to send the text
        send_button2 = Button(bottom_label, text="Voice\n Input", font=FONT_BOLD, width=2, bg="Red",
                              command=lambda: self.voice_input(None))
        send_button2.place(relx=0.66, rely=0.008, relheight=0.06, relwidth=0.1325)

        # send button which will call on_enter function to send the text
        send_button = Button(bottom_label, text="Only Text", font=FONT_BOLD, width=8, bg="Red",
                             command=lambda: self.on_enter(None))
        send_button.place(relx=0.80, rely=0.008, relheight=0.03, relwidth=0.20)
        # send button which will call on_enter function to send the text
        send_button1 = Button(bottom_label, text="Voice", font=FONT_BOLD, width=2, bg="Red",
                              command=lambda: self.on_enter_voice(None))
        send_button1.place(relx=0.80, rely=0.04, relheight=0.027, relwidth=0.20)

    def loadmodel(self):
        # Inference model
        # load the model
        model = models.load_model("s2s")
        # construct encoder model from the output of second layer
        # discard the encoder output and store only states.
        enc_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
        # add input object and state from the layer.
        self.en_model = Model(model.input[0], [state_h_enc, state_c_enc])

        # create Input object for hidden and cell state for decoder
        # shape of layer with hidden or latent dimension
        dec_state_input_h = Input(shape=(256,), name="input_3")
        dec_state_input_c = Input(shape=(256,), name="input_4")
        dec_states_inputs = [dec_state_input_h, dec_state_input_c]

        # add input from the encoder output and initialize with
        # states.
        dec_lstm = model.layers[3]
        dec_outputs, state_h_dec, state_c_dec = dec_lstm(
            model.input[1], initial_state=dec_states_inputs
        )
        dec_states = [state_h_dec, state_c_dec]
        dec_dense = model.layers[4]
        dec_outputs = dec_dense(dec_outputs)
        # create Model with the input of decoder state input and encoder input
        # and decoder output with the decoder states.
        self.dec_model = Model(
            [model.input[1]] + dec_states_inputs, [dec_outputs] + dec_states
        )

    def decode_sequence(self, input_seq):
        # create dict object to get character from the index.
        reverse_target_char_index = dict(enumerate(self.target_characters))
        # get the states from the user input sequence
        states_value = self.en_model.predict(input_seq)

        # fit target characters and
        # initialize every first character to be 1 which is '\t'.
        # Generate empty target sequence of length 1.
        co = cv.fit(self.target_characters)
        target_seq = np.array([co.transform(list("\t")).toarray().tolist()], dtype="float32")

        # if the iteration reaches the end of text than it will be stop the it
        stop_condition = False
        # append every predicted character in decoded sentence
        decoded_sentence = ""
        while not stop_condition:
            # get predicted output and discard hidden and cell state.
            output_chars, h, c = self.dec_model.predict([target_seq] + states_value)

            # get the index and from dictionary get character from it.
            char_index = np.argmax(output_chars[0, -1, :])
            text_char = reverse_target_char_index[char_index]
            decoded_sentence += text_char

            # Exit condition: either hit max length
            # or find stop character.
            if text_char == "\n" or len(decoded_sentence) > self.max_target_length:
                stop_condition = True
            # update target sequence to the current character index.
            target_seq = np.zeros((1, 1, self.num_dec_chars))
            target_seq[0, 0, char_index] = 1.0
            states_value = [h, c]
        # return the decoded sentence
        return decoded_sentence

    def on_enter(self, event):
        # get user query and bot response
        msg = self.e1.get()
        # self.my_msg(msg, "English")
        self.deocded_output(msg)

    def on_enter_voice(self, event):
        # get user query and bot response
        msg = self.output_box["text"]
        # self.my_msg(msg, "English")
        self.deocded_output_voice(msg)

    def voice_input(self, event):
        r = sr.Recognizer()
        with sr.Microphone() as source:
            audio = r.listen(source,phrase_time_limit=5)

            try:
                msg = r.recognize_google(audio)
                # print(msg)
                self.e1.insert(0, msg)
                # self.msg_entry.insert(0,msg)

            except:
                print("Not working")
                # tkinter.messagebox.showerror(title="Error", message="Sorry could not recognize what you said.")

    def bagofcharacters(self, input_t):
        cv = CountVectorizer(binary=True, tokenizer=lambda txt: txt.split(), stop_words=None, analyzer='char')
        en_in_data = [];
        pad_en = [1] + [0] * (len(self.input_characters) - 1)

        cv_inp = cv.fit(self.input_characters)
        en_in_data.append(cv_inp.transform(list(input_t)).toarray().tolist())

        if len(input_t) < self.max_input_length:
            for _ in range(self.max_input_length - len(input_t)):
                en_in_data[0].append(pad_en)

        return np.array(en_in_data, dtype="float32")

    def deocded_output(self, msg):
        # self.text_widget.configure(state=NORMAL)
        # en_in_data = self.bagofcharacters(msg.lower() + ".")
        # self.text_widget.insert(END, str(sender) + " : " + self.decode_sequence(en_in_data)
        #                         + "\n\n")
        # self.text_widget.configure(state=DISABLED)
        # self.text_widget.see(END)
        en_in_data = self.bagofcharacters(msg.lower())
        # print(self.decode_sequence(en_in_data))
        self.myText.set(self.decode_sequence(en_in_data))

    def deocded_output_voice(self, msg):
        # self.text_widget.configure(state=NORMAL)
        # en_in_data = self.bagofcharacters(msg.lower() + ".")
        # self.text_widget.insert(END, str(sender) + " : " + self.decode_sequence(en_in_data)
        #                         + "\n\n")
        engine = pyttsx3.init()
        engine.setProperty("rate", 135)
        engine.say(msg)
        engine.runAndWait()
        # self.text_widget.configure(state=DISABLED)
        # self.text_widget.see(END)

    def my_msg(self, msg, sender):
        if not msg:
            return
        self.msg_entry.delete(0, END)
        self.text_widget.configure(state=NORMAL)
        self.text_widget.insert(END, str(sender) + " : " + str(msg) + "\n")
        self.text_widget.configure(state=DISABLED)


# run the file
if __name__ == "__main__":
    LT = LangTRans()
    LT.run2()