sarang-shrivastava commited on
Commit
206cd4d
1 Parent(s): 68637ef

Update handler

Browse files
Files changed (1) hide show
  1. handler.py +10 -3
handler.py CHANGED
@@ -3,9 +3,10 @@ from typing import Dict, List, Any
3
  # from transformers import AutoTokenizer
4
  # import torch
5
  from datetime import datetime
 
6
 
7
-
8
-
9
 
10
  import requests
11
  from PIL import Image
@@ -19,6 +20,12 @@ class EndpointHandler():
19
  self.processor = Blip2Processor.from_pretrained(path)
20
  self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
21
 
 
 
 
 
 
 
22
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
  # self.model.eval()
24
  # self.model.to(device=device, dtype=self.torch_dtype)
@@ -72,7 +79,7 @@ class EndpointHandler():
72
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
73
 
74
  question = "how many dogs are in the picture?"
75
- inputs = self.processor(raw_image, question, return_tensors="pt").to("cuda")
76
 
77
  out = self.model.generate(**inputs)
78
  output_text = self.processor.decode(out[0], skip_special_tokens=True)
 
3
  # from transformers import AutoTokenizer
4
  # import torch
5
  from datetime import datetime
6
+ import torch
7
 
8
+ import logging
9
+ logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
10
 
11
  import requests
12
  from PIL import Image
 
20
  self.processor = Blip2Processor.from_pretrained(path)
21
  self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
22
 
23
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
24
+
25
+ self.model.to(self.device)
26
+
27
+ logging.info('Model moved to device-' + self.device)
28
+
29
  # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
  # self.model.eval()
31
  # self.model.to(device=device, dtype=self.torch_dtype)
 
79
  raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
80
 
81
  question = "how many dogs are in the picture?"
82
+ inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
83
 
84
  out = self.model.generate(**inputs)
85
  output_text = self.processor.decode(out[0], skip_special_tokens=True)