sarang-shrivastava
commited on
Commit
•
206cd4d
1
Parent(s):
68637ef
Update handler
Browse files- handler.py +10 -3
handler.py
CHANGED
@@ -3,9 +3,10 @@ from typing import Dict, List, Any
|
|
3 |
# from transformers import AutoTokenizer
|
4 |
# import torch
|
5 |
from datetime import datetime
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
|
10 |
import requests
|
11 |
from PIL import Image
|
@@ -19,6 +20,12 @@ class EndpointHandler():
|
|
19 |
self.processor = Blip2Processor.from_pretrained(path)
|
20 |
self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
# self.model.eval()
|
24 |
# self.model.to(device=device, dtype=self.torch_dtype)
|
@@ -72,7 +79,7 @@ class EndpointHandler():
|
|
72 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
73 |
|
74 |
question = "how many dogs are in the picture?"
|
75 |
-
inputs = self.processor(raw_image, question, return_tensors="pt").to(
|
76 |
|
77 |
out = self.model.generate(**inputs)
|
78 |
output_text = self.processor.decode(out[0], skip_special_tokens=True)
|
|
|
3 |
# from transformers import AutoTokenizer
|
4 |
# import torch
|
5 |
from datetime import datetime
|
6 |
+
import torch
|
7 |
|
8 |
+
import logging
|
9 |
+
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG)
|
10 |
|
11 |
import requests
|
12 |
from PIL import Image
|
|
|
20 |
self.processor = Blip2Processor.from_pretrained(path)
|
21 |
self.model = Blip2ForConditionalGeneration.from_pretrained(path, device_map="auto")
|
22 |
|
23 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
self.model.to(self.device)
|
26 |
+
|
27 |
+
logging.info('Model moved to device-' + self.device)
|
28 |
+
|
29 |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
# self.model.eval()
|
31 |
# self.model.to(device=device, dtype=self.torch_dtype)
|
|
|
79 |
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
80 |
|
81 |
question = "how many dogs are in the picture?"
|
82 |
+
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
|
83 |
|
84 |
out = self.model.generate(**inputs)
|
85 |
output_text = self.processor.decode(out[0], skip_special_tokens=True)
|