File size: 15,887 Bytes
b9425fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------
import math
import os
import subprocess
import sys
import time
import argparse
import datetime
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.transforms.functional as visionF
import torch.cuda.amp as amp
from typing import Optional
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import accuracy, AverageMeter
from timm.utils import ModelEma as ModelEma
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from config import get_config
from models import *
from loss import *
from data import build_loader
from lr_scheduler import build_scheduler
from optimizer import build_optimizer
from logger import create_logger
from utils import denormalize, load_checkpoint, load_checkpoint_finetune, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor
from torch.utils.tensorboard import SummaryWriter
scaler = amp.GradScaler()
logger = None
def parse_option():
parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int, default=128, help="batch size for single GPU")
parser.add_argument('--data-path', type=str, default='data', help='path to dataset')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--finetune', help='finetune from checkpoint')
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--output', default='outputs/', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
# ema
parser.add_argument('--model-ema', action='store_true')
# distributed training
parser.add_argument("--local_rank", type=int, required=False, help='local rank for DistributedDataParallel')
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
args, unparsed = parser.parse_known_args()
# print(args)
config = get_config(args)
return args, config
def main(config):
config.defrost()
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
return
# linear scale the learning rate according to total batch size, base bs 1024
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * world_size / 1024.0
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
dist.init_process_group(
backend='nccl', init_method=config.dist_url,
world_size=world_size, rank=rank,
)
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.set_device(rank)
global logger
logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}")
logger.info(config.dump())
writer = None
if dist.get_rank() == 0:
writer = SummaryWriter(config.OUTPUT)
dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config)
logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
model = build_model(config)
model.cuda()
logger.info(str(model)[:10000])
model_ema = None
if config.MODEL_EMA:
# Important to create EMA model after cuda(), DP wrapper, and AMP but
# before SyncBN and DDP wrapper
logger.info(f"Using EMA...")
model_ema = ModelEma(
model,
decay=config.MODEL_EMA_DECAY,
)
optimizer = build_optimizer(config, model)
if config.TRAIN.AMP:
logger.info(f"-------------------------------Using Pytorch AMP...--------------------------------")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False, find_unused_parameters=False)
# model._set_static_graph()
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
lr_scheduler = build_scheduler(config)
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
criterion_bce = torch.nn.BCEWithLogitsLoss()
max_accuracy = 0.0
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT, logger)
if resume_file:
if config.MODEL.RESUME:
logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
if config.MODEL.RESUME:
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, logger, model_ema)
logger.info(f"Start validation")
acc1, acc5, loss = validate(config, data_loader_val, model, writer, epoch=config.TRAIN.START_EPOCH)
logger.info(f"Accuracy of the network on the 50000 test images: {acc1:.1f}, {acc5:.1f}%")
if config.EVAL_MODE:
return
if config.MODEL.FINETUNE:
load_checkpoint_finetune(config, model_without_ddp, logger)
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config, model, criterion, criterion_bce, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler, writer, model_ema)
acc1, acc5, _ = validate(config, data_loader_val, model, writer, epoch)
logger.info(f"Accuracy of the network on the 5000 test images: {acc1:.2f}, {acc5:.2f}%")
if config.MODEL_EMA:
acc1_ema, acc5_ema, _ = validate_ema(config, data_loader_val, model_ema.ema, writer, epoch)
logger.info(f"Accuracy of the EMA network on the 5000 test images: {acc1_ema:.1f}, {acc5_ema:.1f}%")
# acc1 = max(acc1, acc1_ema)
if dist.get_rank() == 0 and epoch % config.SAVE_FREQ == 0:
save_checkpoint(config, epoch, model_without_ddp, acc1, max_accuracy, optimizer, logger, model_ema)
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch(config, model, criterion_ce, criterion_bce, data_loader, optimizer, epoch, mixup_fn, lr_scheduler, writer, model_ema: Optional[ModelEma] = None):
global logger
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
data_time = AverageMeter()
start = time.time()
end = time.time()
for idx, (samples, targets) in enumerate(data_loader):
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
data_time.update(time.time()-end)
lr_scheduler.step_update(optimizer, idx / num_steps + epoch, config)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with amp.autocast(enabled=config.TRAIN.AMP):
output_label, output_feature = model(samples)
if len(output_label) == 1:
loss = criterion_ce(output_label[0], targets)
multi_loss = []
else:
loss, multi_loss = compound_loss((config.REVCOL.FCOE, config.REVCOL.CCOE), output_feature, denormalize(samples, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), output_label, targets, criterion_bce, criterion_ce, epoch)
if not math.isfinite(loss.item()):
print("Loss is {} in iteration {}, multiloss {}, !".format(loss.item(), idx, multi_loss))
scaler.scale(loss).backward()
if config.TRAIN.CLIP_GRAD:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
scaler.unscale_(optimizer)
grad_norm = get_grad_norm(model.parameters())
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if dist.get_rank() == 0 and idx%10 == 0:
writer.add_scalar('Train/train_loss',loss_meter.val, epoch * num_steps + idx )
writer.add_scalar('Train/grad_norm',norm_meter.val, epoch * num_steps + idx )
for i, subloss in enumerate(multi_loss):
writer.add_scalar(f'Train/sub_loss{i}', subloss, epoch * num_steps + idx)
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[-1]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'datatime {data_time.val:.4f} ({data_time.avg:.4f})\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model, writer, epoch):
global logger
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter_list = []
acc5_meter_list = []
for i in range(4):
acc1_meter_list.append(AverageMeter())
acc5_meter_list.append(AverageMeter())
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
outputs,_ = model(images)
if len(acc1_meter_list) != len(outputs):
acc1_meter_list = acc1_meter_list[:len(outputs)]
acc5_meter_list = acc5_meter_list[:len(outputs)]
output_last = outputs[-1]
loss = criterion(output_last, target)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
for i, subnet_out in enumerate(outputs):
acc1, acc5 = accuracy(subnet_out, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
acc1_meter_list[i].update(acc1.item(), target.size(0))
acc5_meter_list[i].update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter_list[-1].val:.3f} ({acc1_meter_list[-1].avg:.3f})\t'
f'Acc@5 {acc5_meter_list[-1].val:.3f} ({acc5_meter_list[-1].avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter_list[-1].avg:.3f} Acc@5 {acc5_meter_list[-1].avg:.3f}')
if dist.get_rank() == 0:
for i in range(len(acc1_meter_list)):
writer.add_scalar(f'Val_top1/acc_{i}', acc1_meter_list[i].avg, epoch)
writer.add_scalar(f'Val_top5/acc_{i}', acc5_meter_list[i].avg, epoch)
return acc1_meter_list[-1].avg, acc5_meter_list[-1].avg, loss_meter.avg
@torch.no_grad()
def validate_ema(config, data_loader, model, writer, epoch):
global logger
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
end = time.time()
for idx, (images, target) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
outputs,_ = model(images)
output_last = outputs[-1]
loss = criterion(output_last, target)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1, acc5 = accuracy(output_last, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg
if __name__ == '__main__':
_, config = parse_option()
cudnn.benchmark = True
os.makedirs(config.OUTPUT, exist_ok=True)
ngpus_per_node = torch.cuda.device_count()
main(None, config, ngpus_per_node)
|