File size: 7,121 Bytes
b9425fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under TheApache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------
import os
import yaml
from yacs.config import CfgNode as CN
_C = CN()
# Base config files
_C.BASE = ['']
# -----------------------------------------------------------------------------
# Data settings
# -----------------------------------------------------------------------------
_C.DATA = CN()
# Batch size for a single GPU, could be overwritten by command line argument
_C.DATA.BATCH_SIZE = 128
# Path to dataset, could be overwritten by command line argument
_C.DATA.DATA_PATH = 'path/to/imagenet'
# Dataset name
_C.DATA.DATASET = 'imagenet'
# Input image size
_C.DATA.IMG_SIZE = 224
# Interpolation to resize image (random, bilinear, bicubic)
_C.DATA.INTERPOLATION = 'bicubic'
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.
_C.DATA.PIN_MEMORY = True
# Number of data loading threads
_C.DATA.NUM_WORKERS = 8
# Path to evaluation dataset for ImageNet 22k
_C.DATA.EVAL_DATA_PATH = 'path/to/eval/data'
# -----------------------------------------------------------------------------
# Model settings
# -----------------------------------------------------------------------------
_C.MODEL = CN()
# Model type
_C.MODEL.TYPE = ''
# Model name
_C.MODEL.NAME = ''
# Checkpoint to resume, could be overwritten by command line argument
_C.MODEL.RESUME = ''
# Checkpoint to finetune, could be overwritten by command line argument
_C.MODEL.FINETUNE = ''
# Number of classes, overwritten in data preparation
_C.MODEL.NUM_CLASSES = 1000
# Label Smoothing
_C.MODEL.LABEL_SMOOTHING = 0.0
# -----------------------------------------------------------------------------
# Specific Model settings
# -----------------------------------------------------------------------------
_C.REVCOL = CN()
_C.REVCOL.INTER_SUPV = True
_C.REVCOL.SAVEMM = True
_C.REVCOL.FCOE = 4.0
_C.REVCOL.CCOE = 0.8
_C.REVCOL.KERNEL_SIZE = 3
_C.REVCOL.DROP_PATH = 0.1
_C.REVCOL.HEAD_INIT_SCALE = None
# -----------------------------------------------------------------------------
# Training settings
# -----------------------------------------------------------------------------
_C.TRAIN = CN()
_C.TRAIN.START_EPOCH = 0
_C.TRAIN.EPOCHS = 300
_C.TRAIN.WARMUP_EPOCHS = 5
_C.TRAIN.WEIGHT_DECAY = 4e-5
_C.TRAIN.BASE_LR = 0.4
_C.TRAIN.WARMUP_LR = 0.05
_C.TRAIN.MIN_LR = 1e-5
# Clip gradient norm
_C.TRAIN.CLIP_GRAD = 10.0
# Auto resume from latest checkpoint
_C.TRAIN.AUTO_RESUME = True
# Check point
_C.TRAIN.USE_CHECKPOINT = False
_C.TRAIN.AMP = True
# LR scheduler
_C.TRAIN.LR_SCHEDULER = CN()
# LR scheduler
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine'
# Epoch interval to decay LR, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30
# LR decay rate, used in StepLRScheduler
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1
# Optimizer
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'sgd'
# Optimizer Epsilon fow adamw
_C.TRAIN.OPTIMIZER.EPS = 1e-8
# Optimizer Betas fow adamw
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999)
# SGD momentum
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
# Layer Decay
_C.TRAIN.OPTIMIZER.LAYER_DECAY = 1.0
# -----------------------------------------------------------------------------
# Augmentation settings
# -----------------------------------------------------------------------------
_C.AUG = CN()
# Color jitter factor
_C.AUG.COLOR_JITTER = 0.4
# Use AutoAugment policy. "v0" or "original"
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1'
# Random erase prob
_C.AUG.REPROB = 0.25
# Random erase mode
_C.AUG.REMODE = 'pixel'
# Random erase count
_C.AUG.RECOUNT = 1
# Mixup alpha, mixup enabled if > 0
_C.AUG.MIXUP = 0.8
# Cutmix alpha, cutmix enabled if > 0
_C.AUG.CUTMIX = 1.0
# Cutmix min/max ratio, overrides alpha and enables cutmix if set
_C.AUG.CUTMIX_MINMAX = None
# Probability of performing mixup or cutmix when either/both is enabled
_C.AUG.MIXUP_PROB = 1.0
# Probability of switching to cutmix when both mixup and cutmix enabled
_C.AUG.MIXUP_SWITCH_PROB = 0.5
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem"
_C.AUG.MIXUP_MODE = 'batch'
# -----------------------------------------------------------------------------
# Testing settings
# -----------------------------------------------------------------------------
_C.TEST = CN()
# Whether to use center crop when testing
_C.TEST.CROP = True
# -----------------------------------------------------------------------------
# Misc
# -----------------------------------------------------------------------------
# Path to output folder, overwritten by command line argument
_C.OUTPUT = 'outputs/'
# Tag of experiment, overwritten by command line argument
_C.TAG = 'default'
# Frequency to save checkpoint
_C.SAVE_FREQ = 1
# Frequency to logging info
_C.PRINT_FREQ = 100
# Fixed random seed
_C.SEED = 0
# Perform evaluation only, overwritten by command line argument
_C.EVAL_MODE = False
# Test throughput only, overwritten by command line argument
_C.THROUGHPUT_MODE = False
# local rank for DistributedDataParallel, given by command line argument
_C.LOCAL_RANK = 0
# EMA
_C.MODEL_EMA = False
_C.MODEL_EMA_DECAY = 0.9999
# Machine
_C.MACHINE = CN()
_C.MACHINE.MACHINE_WORLD_SIZE = None
_C.MACHINE.MACHINE_RANK = None
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
if args.opts:
config.merge_from_list(args.opts)
# merge from specific arguments
if args.batch_size:
config.DATA.BATCH_SIZE = args.batch_size
if args.data_path:
config.DATA.DATA_PATH = args.data_path
if args.resume:
config.MODEL.RESUME = args.resume
if args.finetune:
config.MODEL.FINETUNE = args.finetune
if args.use_checkpoint:
config.TRAIN.USE_CHECKPOINT = True
if args.output:
config.OUTPUT = args.output
if args.tag:
config.TAG = args.tag
if args.eval:
config.EVAL_MODE = True
if args.model_ema:
config.MODEL_EMA = True
config.dist_url = args.dist_url
# set local rank for distributed training
config.LOCAL_RANK = args.local_rank
# output folder
config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG)
config.freeze()
def get_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
config = _C.clone()
update_config(config, args)
return config
|