File size: 6,888 Bytes
b9425fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# --------------------------------------------------------
# Reversible Column Networks
# Copyright (c) 2022 Megvii Inc.
# Licensed under The Apache License 2.0 [see LICENSE for details]
# Written by Yuxuan Cai
# --------------------------------------------------------

import torch
from typing import Any, Iterable, List, Tuple, Callable
import torch.distributed as dist

def get_gpu_states(fwd_gpu_devices) -> Tuple[List[int], List[torch.Tensor]]:
    # This will not error out if "arg" is a CPU tensor or a non-tensor type because
    # the conditionals short-circuit.
    fwd_gpu_states = []
    for device in fwd_gpu_devices:
        with torch.cuda.device(device):
            fwd_gpu_states.append(torch.cuda.get_rng_state())

    return fwd_gpu_states

def get_gpu_device(*args):

    fwd_gpu_devices = list(set(arg.get_device() for arg in args
                               if isinstance(arg, torch.Tensor) and arg.is_cuda))
    return fwd_gpu_devices

def set_device_states(fwd_cpu_state, devices, states) -> None:
    torch.set_rng_state(fwd_cpu_state)
    for device, state in zip(devices, states):
        with torch.cuda.device(device):
            torch.cuda.set_rng_state(state)

def detach_and_grad(inputs: Tuple[Any, ...]) -> Tuple[torch.Tensor, ...]:
    if isinstance(inputs, tuple):
        out = []
        for inp in inputs:
            if not isinstance(inp, torch.Tensor):
                out.append(inp)
                continue

            x = inp.detach()
            x.requires_grad = True
            out.append(x)
        return tuple(out)
    else:
        raise RuntimeError(
            "Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__)

def get_cpu_and_gpu_states(gpu_devices):
    return torch.get_rng_state(), get_gpu_states(gpu_devices)

class ReverseFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, run_functions, alpha, *args):
        l0, l1, l2, l3 = run_functions
        alpha0, alpha1, alpha2, alpha3 = alpha
        ctx.run_functions  = run_functions
        ctx.alpha = alpha
        ctx.preserve_rng_state = True

        ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
                                   "dtype": torch.get_autocast_gpu_dtype(),
                                   "cache_enabled": torch.is_autocast_cache_enabled()}
        ctx.cpu_autocast_kwargs = {"enabled": torch.is_autocast_cpu_enabled(),
                                   "dtype": torch.get_autocast_cpu_dtype(),
                                   "cache_enabled": torch.is_autocast_cache_enabled()}

        assert len(args) == 5
        [x, c0, c1, c2, c3] = args
        if type(c0) == int:
            ctx.first_col = True
        else:
            ctx.first_col = False
        with torch.no_grad():
            gpu_devices = get_gpu_device(*args)
            ctx.gpu_devices = gpu_devices
            ctx.cpu_states_0, ctx.gpu_states_0  = get_cpu_and_gpu_states(gpu_devices)
            c0 = l0(x, c1) + c0*alpha0
            ctx.cpu_states_1, ctx.gpu_states_1  = get_cpu_and_gpu_states(gpu_devices)
            c1 = l1(c0, c2) + c1*alpha1
            ctx.cpu_states_2, ctx.gpu_states_2  = get_cpu_and_gpu_states(gpu_devices)
            c2 = l2(c1, c3) + c2*alpha2
            ctx.cpu_states_3, ctx.gpu_states_3  = get_cpu_and_gpu_states(gpu_devices)
            c3 = l3(c2, None) + c3*alpha3
        ctx.save_for_backward(x, c0, c1, c2, c3)
        return x, c0, c1 ,c2, c3

    @staticmethod
    def backward(ctx, *grad_outputs):
        x, c0, c1, c2, c3 = ctx.saved_tensors
        l0, l1, l2, l3 = ctx.run_functions
        alpha0, alpha1, alpha2, alpha3 = ctx.alpha
        gx_right, g0_right, g1_right, g2_right, g3_right = grad_outputs
        (x, c0, c1, c2, c3) = detach_and_grad((x, c0, c1, c2, c3))

        with torch.enable_grad(), \
            torch.random.fork_rng(devices=ctx.gpu_devices, enabled=ctx.preserve_rng_state), \
            torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs), \
            torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):
            
            g3_up = g3_right
            g3_left = g3_up*alpha3 ##shortcut
            set_device_states(ctx.cpu_states_3, ctx.gpu_devices, ctx.gpu_states_3)                    
            oup3 = l3(c2, None)
            torch.autograd.backward(oup3, g3_up, retain_graph=True)
            with torch.no_grad():
                c3_left = (1/alpha3)*(c3 - oup3) ## feature reverse
            g2_up = g2_right+ c2.grad
            g2_left = g2_up*alpha2 ##shortcut

            (c3_left,) = detach_and_grad((c3_left,))
            set_device_states(ctx.cpu_states_2, ctx.gpu_devices, ctx.gpu_states_2)          
            oup2 = l2(c1, c3_left)
            torch.autograd.backward(oup2, g2_up, retain_graph=True)
            c3_left.requires_grad = False
            cout3 = c3_left*alpha3 ##alpha3 update
            torch.autograd.backward(cout3, g3_up)
            
            with torch.no_grad():
                c2_left = (1/alpha2)*(c2 - oup2) ## feature reverse
            g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left
            g1_up = g1_right+c1.grad
            g1_left = g1_up*alpha1 ##shortcut

            (c2_left,) = detach_and_grad((c2_left,))
            set_device_states(ctx.cpu_states_1, ctx.gpu_devices, ctx.gpu_states_1)     
            oup1 = l1(c0, c2_left)
            torch.autograd.backward(oup1, g1_up, retain_graph=True)
            c2_left.requires_grad = False
            cout2 = c2_left*alpha2 ##alpha2 update
            torch.autograd.backward(cout2, g2_up)

            with torch.no_grad():
                c1_left = (1/alpha1)*(c1 - oup1) ## feature reverse
            g0_up = g0_right + c0.grad
            g0_left = g0_up*alpha0 ##shortcut
            g2_left = g2_left + c2_left.grad if c2_left.grad is not None else g2_left ## Fusion
            
            (c1_left,) = detach_and_grad((c1_left,))
            set_device_states(ctx.cpu_states_0, ctx.gpu_devices, ctx.gpu_states_0)     
            oup0 = l0(x, c1_left)            
            torch.autograd.backward(oup0, g0_up, retain_graph=True)
            c1_left.requires_grad = False
            cout1 = c1_left*alpha1 ##alpha1 update
            torch.autograd.backward(cout1, g1_up)

            with torch.no_grad():
                c0_left = (1/alpha0)*(c0 - oup0) ## feature reverse
            gx_up = x.grad ## Fusion
            g1_left = g1_left + c1_left.grad if c1_left.grad is not None else g1_left ## Fusion
            c0_left.requires_grad = False
            cout0 = c0_left*alpha0 ##alpha0 update
            torch.autograd.backward(cout0, g0_up)
        
        if ctx.first_col:
            return None, None, gx_up, None, None, None, None
        else:
            return None, None, gx_up, g0_left, g1_left, g2_left, g3_left