|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from timm.scheduler.cosine_lr import CosineLRScheduler |
|
from timm.scheduler.step_lr import StepLRScheduler |
|
from timm.scheduler.scheduler import Scheduler |
|
|
|
|
|
def build_scheduler(config, optimizer=None): |
|
|
|
lr_scheduler = None |
|
if config.TRAIN.LR_SCHEDULER.NAME == 'cosine': |
|
lr_scheduler = CosLRScheduler() |
|
elif config.TRAIN.LR_SCHEDULER.NAME == 'multistep': |
|
lr_scheduler = StepLRScheduler() |
|
else: |
|
raise NotImplementedError(f"Unkown lr scheduler: {config.TRAIN.LR_SCHEDULER.NAME}") |
|
|
|
return lr_scheduler |
|
|
|
import math |
|
|
|
|
|
class CosLRScheduler(): |
|
def __init__(self) -> None: |
|
pass |
|
|
|
def step_update(self, optimizer, epoch, config): |
|
"""Decay the learning rate with half-cycle cosine after warmup""" |
|
if epoch < config.TRAIN.WARMUP_EPOCHS: |
|
lr = (config.TRAIN.BASE_LR-config.TRAIN.WARMUP_LR) * epoch / config.TRAIN.WARMUP_EPOCHS + config.TRAIN.WARMUP_LR |
|
else: |
|
lr = config.TRAIN.MIN_LR + (config.TRAIN.BASE_LR - config.TRAIN.MIN_LR) * 0.5 * \ |
|
(1. + math.cos(math.pi * (epoch - config.TRAIN.WARMUP_EPOCHS ) / (config.TRAIN.EPOCHS - config.TRAIN.WARMUP_EPOCHS ))) |
|
for param_group in optimizer.param_groups: |
|
if "lr_scale" in param_group: |
|
param_group["lr"] = lr * param_group["lr_scale"] |
|
else: |
|
param_group["lr"] = lr |
|
return lr |
|
|
|
class LinearLRScheduler(Scheduler): |
|
def __init__(self, |
|
optimizer: torch.optim.Optimizer, |
|
t_initial: int, |
|
lr_min_rate: float, |
|
warmup_t=0, |
|
warmup_lr_init=0., |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, param_group_field="lr", |
|
noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, |
|
initialize=initialize) |
|
|
|
self.t_initial = t_initial |
|
self.lr_min_rate = lr_min_rate |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.t_in_epochs = t_in_epochs |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def _get_lr(self, t): |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
t = t - self.warmup_t |
|
total_t = self.t_initial - self.warmup_t |
|
lrs = [v - ((v - v * self.lr_min_rate) * (t / total_t)) for v in self.base_values] |
|
return lrs |
|
|
|
def get_epoch_values(self, epoch: int): |
|
if self.t_in_epochs: |
|
return self._get_lr(epoch) |
|
else: |
|
return None |
|
|
|
def get_update_values(self, num_updates: int): |
|
if not self.t_in_epochs: |
|
return self._get_lr(num_updates) |
|
else: |
|
return None |
|
|