|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from typing import Any, Iterable, List, Tuple, Callable |
|
import torch.distributed as dist |
|
|
|
def get_gpu_states(fwd_gpu_devices) -> Tuple[List[int], List[torch.Tensor]]: |
|
|
|
|
|
fwd_gpu_states = [] |
|
for device in fwd_gpu_devices: |
|
with torch.cuda.device(device): |
|
fwd_gpu_states.append(torch.cuda.get_rng_state()) |
|
|
|
return fwd_gpu_states |
|
|
|
def get_gpu_device(*args): |
|
|
|
fwd_gpu_devices = list(set(arg.get_device() for arg in args |
|
if isinstance(arg, torch.Tensor) and arg.is_cuda)) |
|
return fwd_gpu_devices |
|
|
|
def set_device_states(fwd_cpu_state, devices, states) -> None: |
|
torch.set_rng_state(fwd_cpu_state) |
|
for device, state in zip(devices, states): |
|
with torch.cuda.device(device): |
|
torch.cuda.set_rng_state(state) |
|
|
|
def detach_and_grad(inputs: Tuple[Any, ...]) -> Tuple[torch.Tensor, ...]: |
|
if isinstance(inputs, tuple): |
|
out = [] |
|
for inp in inputs: |
|
if not isinstance(inp, torch.Tensor): |
|
out.append(inp) |
|
continue |
|
|
|
x = inp.detach() |
|
x.requires_grad = True |
|
out.append(x) |
|
return tuple(out) |
|
else: |
|
raise RuntimeError( |
|
"Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__) |
|
|
|
def get_cpu_and_gpu_states(gpu_devices): |
|
return torch.get_rng_state(), get_gpu_states(gpu_devices) |
|
|
|
class ReverseFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_functions, alpha, *args): |
|
l0, l1, l2, l3 = run_functions |
|
alpha0, alpha1, alpha2, alpha3 = alpha |
|
ctx.run_functions = run_functions |
|
ctx.alpha = alpha |
|
ctx.preserve_rng_state = True |
|
|
|
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), |
|
"dtype": torch.get_autocast_gpu_dtype(), |
|
"cache_enabled": torch.is_autocast_cache_enabled()} |
|
ctx.cpu_autocast_kwargs = {"enabled": torch.is_autocast_cpu_enabled(), |
|
"dtype": torch.get_autocast_cpu_dtype(), |
|
"cache_enabled": torch.is_autocast_cache_enabled()} |
|
|
|
assert len(args) == 5 |
|
[x, c0, c1, c2, c3] = args |
|
if type(c0) == int: |
|
ctx.first_col = True |
|
else: |
|
ctx.first_col = False |
|
with torch.no_grad(): |
|
gpu_devices = get_gpu_device(*args) |
|
ctx.gpu_devices = gpu_devices |
|
ctx.cpu_states_0, ctx.gpu_states_0 = get_cpu_and_gpu_states(gpu_devices) |
|
c0 = l0(x, c1) + c0*alpha0 |
|
ctx.cpu_states_1, ctx.gpu_states_1 = get_cpu_and_gpu_states(gpu_devices) |
|
c1 = l1(c0, c2) + c1*alpha1 |
|
ctx.cpu_states_2, ctx.gpu_states_2 = get_cpu_and_gpu_states(gpu_devices) |
|
c2 = l2(c1, c3) + c2*alpha2 |
|
ctx.cpu_states_3, ctx.gpu_states_3 = get_cpu_and_gpu_states(gpu_devices) |
|
c3 = l3(c2, None) + c3*alpha3 |
|
ctx.save_for_backward(x, c0, c1, c2, c3) |
|
return x, c0, c1 ,c2, c3 |
|
|
|
@staticmethod |
|
def backward(ctx, *grad_outputs): |
|
x, c0, c1, c2, c3 = ctx.saved_tensors |
|
l0, l1, l2, l3 = ctx.run_functions |
|
alpha0, alpha1, alpha2, alpha3 = ctx.alpha |
|
gx_right, g0_right, g1_right, g2_right, g3_right = grad_outputs |
|
(x, c0, c1, c2, c3) = detach_and_grad((x, c0, c1, c2, c3)) |
|
|
|
with torch.enable_grad(), \ |
|
torch.random.fork_rng(devices=ctx.gpu_devices, enabled=ctx.preserve_rng_state), \ |
|
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs), \ |
|
torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): |
|
|
|
g3_up = g3_right |
|
g3_left = g3_up*alpha3 |
|
set_device_states(ctx.cpu_states_3, ctx.gpu_devices, ctx.gpu_states_3) |
|
oup3 = l3(c2, None) |
|
torch.autograd.backward(oup3, g3_up, retain_graph=True) |
|
with torch.no_grad(): |
|
c3_left = (1/alpha3)*(c3 - oup3) |
|
g2_up = g2_right+ c2.grad |
|
g2_left = g2_up*alpha2 |
|
|
|
(c3_left,) = detach_and_grad((c3_left,)) |
|
set_device_states(ctx.cpu_states_2, ctx.gpu_devices, ctx.gpu_states_2) |
|
oup2 = l2(c1, c3_left) |
|
torch.autograd.backward(oup2, g2_up, retain_graph=True) |
|
c3_left.requires_grad = False |
|
cout3 = c3_left*alpha3 |
|
torch.autograd.backward(cout3, g3_up) |
|
|
|
with torch.no_grad(): |
|
c2_left = (1/alpha2)*(c2 - oup2) |
|
g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left |
|
g1_up = g1_right+c1.grad |
|
g1_left = g1_up*alpha1 |
|
|
|
(c2_left,) = detach_and_grad((c2_left,)) |
|
set_device_states(ctx.cpu_states_1, ctx.gpu_devices, ctx.gpu_states_1) |
|
oup1 = l1(c0, c2_left) |
|
torch.autograd.backward(oup1, g1_up, retain_graph=True) |
|
c2_left.requires_grad = False |
|
cout2 = c2_left*alpha2 |
|
torch.autograd.backward(cout2, g2_up) |
|
|
|
with torch.no_grad(): |
|
c1_left = (1/alpha1)*(c1 - oup1) |
|
g0_up = g0_right + c0.grad |
|
g0_left = g0_up*alpha0 |
|
g2_left = g2_left + c2_left.grad if c2_left.grad is not None else g2_left |
|
|
|
(c1_left,) = detach_and_grad((c1_left,)) |
|
set_device_states(ctx.cpu_states_0, ctx.gpu_devices, ctx.gpu_states_0) |
|
oup0 = l0(x, c1_left) |
|
torch.autograd.backward(oup0, g0_up, retain_graph=True) |
|
c1_left.requires_grad = False |
|
cout1 = c1_left*alpha1 |
|
torch.autograd.backward(cout1, g1_up) |
|
|
|
with torch.no_grad(): |
|
c0_left = (1/alpha0)*(c0 - oup0) |
|
gx_up = x.grad |
|
g1_left = g1_left + c1_left.grad if c1_left.grad is not None else g1_left |
|
c0_left.requires_grad = False |
|
cout0 = c0_left*alpha0 |
|
torch.autograd.backward(cout0, g0_up) |
|
|
|
if ctx.first_col: |
|
return None, None, gx_up, None, None, None, None |
|
else: |
|
return None, None, gx_up, g0_left, g1_left, g2_left, g3_left |
|
|